RESUMO
Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.
Assuntos
Anticorpos Antifúngicos/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Imunidade , Imunoglobulina G/imunologia , Micobioma/imunologia , Animais , Linfócitos B/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Fezes/microbiologia , Centro Germinativo/imunologia , Humanos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Transdução de SinaisRESUMO
Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.
Assuntos
Aminoácidos , Candida albicans , Feminino , Humanos , Candida albicans/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Candida/metabolismo , Prolina/metabolismo , Candida glabrata/metabolismoRESUMO
Invasive fungal pathogen Candida auris has become a public health threat causing outbreaks of high mortality infections. Drug resistance often limits treatment options. For Candida albicans, subinhibitory concentrations of echinocandins unmask immunostimulatory ß-glucan, augmenting immunity. Here we analyze the impact of echinocandin treatment of C. auris on ß-glucan exposure and human neutrophil interactions. We show subinhibitory concentrations lead to minimal glucan unmasking and only subtle influences on neutrophil functions for the isolates belonging to circulating clades. The data suggest that echinocandin treatment will not largely alter phagocytic responses. Glucan masking pathways appear to differ between C. auris and C. albicans.
Assuntos
Antifúngicos , Candida auris , Equinocandinas , Micafungina , Neutrófilos , beta-Glucanas , Humanos , Micafungina/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , beta-Glucanas/farmacologia , Antifúngicos/farmacologia , Equinocandinas/farmacologia , Candida auris/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: Candida auris isolates exhibit elevated amphotericin B (AMB) minimum inhibitory concentrations (MICs). As liposomal AMB (L-AMB) can be safely administered at high doses, we explored L-AMB pharmacodynamics against C. auris isolates in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) dilution model. METHODS: Four C. auris isolates with Clinical and Laboratory Standards Institute (CLSI) AMB MICs = 0.5-2â mg/L were tested in an in vitro PK/PD model simulating L-AMB pharmacokinetics. The in vitro model was validated using a Candida albicans isolate tested in animals. The peak concentration (Cmax)/MIC versus log10 colony-forming units (CFU)/mL reduction from the initial inoculum was analyzed with the sigmoidal model with variable slope (Emax model). Monte Carlo analysis was performed for the standard (3â mg/kg) and higher (5â mg/kg) L-AMB doses. RESULTS: The in vitro PK/PD relationship Cmax/MIC versus log10 CFU/mL reduction followed a sigmoidal pattern (R2 = 0.91 for C. albicans, R2 = 0.86 for C. auris). The Cmax/MIC associated with stasis was 2.1 for C. albicans and 9 for C. auris. The probability of target attainment was >95% with 3â mg/kg for wild-type C. albicans isolates with MIC ≤2â mg/L and C. auris isolates with MIC ≤1â mg/L whereas 5â mg/kg L-AMB is needed for C. auris isolates with MIC 2â mg/L. CONCLUSIONS: L-AMB was 4-fold less active against C. auris than C. albicans. Candida auris isolates with CLSI MIC 2â mg/L would require a higher L-AMB dose.
Assuntos
Anfotericina B , Antifúngicos , Animais , Anfotericina B/farmacologia , Antifúngicos/farmacocinética , Candida auris , Candida , Candida albicans , Testes de Sensibilidade MicrobianaRESUMO
The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.
Assuntos
Candida , Candidíase , Imunoglobulina G , Animais , Camundongos , Candida/imunologia , Candida/patogenicidade , Humanos , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/sangue , Imunoglobulina G/sangue , Antígenos de Fungos/imunologia , Antígenos de Fungos/sangue , Proteômica/métodos , Candida albicans/imunologia , Candida albicans/patogenicidade , Proteínas Fúngicas/imunologia , Fosfoglicerato Mutase/imunologia , Fosfoglicerato Quinase/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Anticorpos Antifúngicos/sangue , Anticorpos Antifúngicos/imunologia , Feminino , VirulênciaRESUMO
Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased ß-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.
Assuntos
Antifúngicos , Candida auris , Virulência/genética , Candida auris/genética , Candida auris/efeitos dos fármacos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/imunologia , Farmacorresistência Fúngica/genética , Genoma Fúngico , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Regulação Fúngica da Expressão Gênica , Perfilação da Expressão Gênica , AnimaisRESUMO
BACKGROUND: C. auris has become a growing concern worldwide due to increases in incidence of colonization and reports of invasive infections. There are limited data on clinical factors associated with poor outcomes in patients with C. auris bloodstream infection (BSI). METHODS: We assembled a multicenter retrospective cohort of patients with C. auris BSI from two geographics areas in US healthcare settings. We collected data on demographic, clinical, and microbiologic characteristics to describe the cohort and constructed multivariate logistic regression models to understand risk factors for two clinical outcomes, all-cause mortality during facility admission, and blood culture clearance. RESULTS: Our cohort consisted of 187 patients with C. auris BSI (56.1% male, 55.6% age >65 years); 54.6% died by facility discharge and 66.9% (of 142 with available data) experienced blood culture clearance. Pitt bacteremia score at infection onset was associated with mortality (odds-ratio [95% confidence interval]: 1.19 [1.01,1.40] per 1-point increase). Hemodialysis was associated with a reduced odds of microbiologic clearance (0.15 [0.05,0.43]) and with mortality (3.08 [1.27,7.50]). CONCLUSIONS: The Pitt bacteremia score at the onset of C. auris BSI may be a useful tool in identifying patients at risk for mortality. Targeted infection prevention practices in patients receiving hemodialysis may be useful to limit poor outcomes.
RESUMO
Candida auris is considered a nosocomial pathogen of high concern and is currently spreading across the United States. Infection control measures for C. auris focus mainly on healthcare facilities, yet transmission levels may already be significant in the community before outbreaks are detected in healthcare settings. Wastewater-based epidemiology (culture, quantitative PCR, and whole-genome sequencing) can potentially gauge pathogen transmission in the general population and lead to early detection of C. auris before it is detected in clinical cases. To learn more about the sensitivity and limitations of wastewater-based surveillance, we used wastewater-based methods to detect C. auris in a southern Utah jurisdiction with no known clinical cases before and after the documented transfer of colonized patients from bordering Nevada. Our study illustrates the potential of wastewater-based surveillance for being sufficiently sensitive to detect C. auris transmission during the early stages of introduction into a community.
Assuntos
Candida auris , Candidíase , Águas Residuárias , Humanos , Utah/epidemiologia , Candidíase/epidemiologia , Candidíase/microbiologia , Candidíase/transmissão , Candidíase/diagnóstico , Águas Residuárias/microbiologia , Candida auris/genética , História do Século XXI , Vigilância Epidemiológica Baseada em Águas Residuárias , Sequenciamento Completo do Genoma , Candida/genética , Candida/isolamento & purificação , Candida/classificaçãoRESUMO
Candida auris is an emerging fungal pathogen that typically affects patients in healthcare settings. Data on C. auris cases in correctional facilities are limited but are needed to guide public health recommendations. We describe cases and challenges of providing care for 13 patients who were transferred to correctional facilities during January 2020-December 2022 after having a positive C. auris specimen. All patients had positive specimens identified while receiving inpatient care at healthcare facilities in geographic areas with high C. auris prevalence. Correctional facilities reported challenges managing patients and implementing prevention measures; those challenges varied by whether patients were housed in prison medical units or general population units. Although rarely reported, C. auris cases in persons who are incarcerated may occur, particularly in persons with known risk factors. Measures to manage cases and prevent C. auris spread in correctional facilities should address setting-specific challenges in healthcare and nonhealthcare correctional environments.
Assuntos
Candida , Candidíase , Humanos , Candidíase/microbiologia , Candida auris , Antifúngicos/uso terapêutico , Estabelecimentos CorrecionaisRESUMO
Candida auris was reported by the WHO as second to Cryptococcus neoformans, in the list of nineteen fungal priority pathogens, along with two species with a new nomenclature, Nakaseomyces glabrata (Candida glabrata) and Pichia kudriavzevii (Candida krusei). This novel classification was based on antifungal resistance, the number of deaths, evidence-based treatment, access to diagnostics, annual incidence, and complications and sequelae. We assessed which molecular assays have been used to diagnose Candida auris outbreaks in the last five years. Using "Candida auris; outbreak; molecular detection" as keywords, our search in PubMed revealed 32 results, from which we selected 23 original papers published in 2019-2024. The analyzed studies revealed that the detection methods were very different: from the VITEK® 2 System to MALDI TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight), NGS (Next-Generation Sequencing), WGS (Whole Genome Sequencing), and commercially available real-time PCR (Polymerase Chain Reaction) assays. Moreover, we identified studies that detected antifungal resistance genes (e.g., FKS for echinocandins and ERG11 for azoles). The analyzed outbreaks were from all continents, which confirms the capability of this yeast to spread between humans and to contaminate the environment. It is important that real-time PCR assays were developed for accurate and affordable detection by all laboratories, including the detection of antifungal resistance genes. This will allow the fast and efficient implementation of stewardship programs in hospitals.
RESUMO
We observed an increase in the frequency of Candida auris among invasive candidiasis isolates in the 2022 SENTRY Antifungal Surveillance Program compared to prior years: ≤0.1% before 2018, 0.4%-0.6% from 2018 to 2021, and 1.6% in 2022. C. auris isolates were collected in seven countries, but 28 (35.9%) isolates were recovered in the USA (five states; more common in New York, Texas, and New Jersey) and 26 (33.3%) in Panama. Greece and Turkey had 12 and 9 isolates, respectively. Overall, 82.1% of the isolates were resistant to fluconazole; 17.9% were resistant to amphotericin B; and 1.3% were resistant to caspofungin, anidulafungin, or micafungin (Centers for Disease Control and Prevention tentative resistance breakpoints). Rezafungin inhibited 96.2% of the isolates (Clinical and Laboratory Standards Institute susceptibility breakpoint). Pandrug resistance was not observed, but 17.9% of the isolates were resistant to fluconazole and amphotericin B. South Asian (Clade I) isolates were most common (n = 40, 51.3%); of these, 97.5% were resistant to fluconazole and 30.0% were resistant to amphotericin B. Thirty (38.5%) isolates belonged to the South American region (Clade IV), and 56.7% of those were resistant to fluconazole and 6.7% to amphotericin B. Seven isolates belonged to the South African Clade III and one to East Asian Clade II. Erg11 (Y132F, K143R, and F126L) and MRR1 (N647T) alterations were detected. One isolate that was resistant to all echinocandins carried an FKS R1354G alteration. Two isolates displayed elevated rezafungin minimum inhibitory concentration (MIC) values but low MIC values against other echinocandins and no FKS alterations. As C. auris is spreading globally, monitoring this species is prudent.
Assuntos
Antifúngicos , Candida auris , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Humanos , Candida auris/efeitos dos fármacos , Candida auris/genética , Farmacorresistência Fúngica/genética , Genótipo , Equinocandinas/farmacologia , Micafungina/farmacologia , Candidíase Invasiva/microbiologia , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/epidemiologia , Anfotericina B/farmacologia , Anidulafungina/farmacologia , Fluconazol/farmacologia , Caspofungina/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candida/isolamento & purificação , Candidíase/microbiologia , Candidíase/tratamento farmacológicoRESUMO
Only three classes of antifungal drugs are currently in clinical use. Here, we report that derivatives of the malarial drug mefloquine have broad-spectrum antifungal activity including difficult-to-treat molds and endemic fungi. Pharmacokinetic and efficacy studies of NSC-4377 indicate that it penetrates the central nervous system and is active against Candida auris in vivo. These data strongly support the further development of mefloquine analogs as a potentially new class of antifungal molecules.
RESUMO
The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.
Assuntos
Antifúngicos , Candida , Humanos , Antifúngicos/farmacologia , Candida auris , Lipossomos , Testes de Sensibilidade Microbiana , BiofilmesRESUMO
Candida auris is an evolving and concerning global threat. Of particular concern are bloodstream infections related to central venous catheters. We evaluated the activity of taurolidine, a broad-spectrum antimicrobial in catheter lock solutions, against 106 C. auris isolates. Taurolidine was highly active with a MIC50/MIC90 of 512/512 mg/L, over 20-fold lower than lock solution concentrations of ≥13,500 mg/L. Our data demonstrate a theoretical basis for taurolidine-based lock solutions for prevention of C. auris catheter-associated infections.
Assuntos
Antifúngicos , Candida auris , Infecções Relacionadas a Cateter , Testes de Sensibilidade Microbiana , Taurina , Tiadiazinas , Tiadiazinas/farmacologia , Taurina/análogos & derivados , Taurina/farmacologia , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/prevenção & controle , Humanos , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Cateteres Venosos Centrais/microbiologia , Cateteres Venosos Centrais/efeitos adversos , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Candidemia/microbiologia , Candidemia/tratamento farmacológicoRESUMO
The emergence of Candida auris poses a significant health challenge that has led to a new era of multidrug-resistant fungal infections. Invasive infections caused by C. auris are usually associated with remarkable morbidity and mortality. For many years, amphotericin B (AmB) remained the most efficient and the last line of treatment against most hard-to-treat fungal infections. However, strains of C. auris possess extraordinary resistance to most antifungal agents, including AmB. In this study, we screened ~2,600 FDA-approved drugs and clinical compounds to identify the antiemetic drug rolapitant as a promising enhancer to AmB against C. auris. Rolapitant exhibited potent synergistic interactions with AmB against all tested (29/29) C. auris isolates. In a time-kill assay, rolapitant restored the fungicidal activity of AmB within 4 h. Additionally, the synergistic relationship between rolapitant and AmB was observed against other medically crucial Candida, Cryptococcus, and Aspergillus species. A transcriptomic study revealed that exposure to rolapitant affects oxidation reduction processes, ion transporters, and ATP production. Rolapitant triggers an elevation in cytosolic and mitochondrial calcium levels and induces oxidative stress within fungal cells. An ATP luminescence assay confirmed that rolapitant, at sub-inhibitory concentrations, significantly interfered with ATP production in C. auris. Moreover, rolapitant enhanced the in vivo activity of AmB in a mouse model of disseminated C. auris infection, as the combination reduced the fungal burden in murine kidneys by ~1 log (~90%) colony forming units. Our findings warrant further investigation of using rolapitant to overcome AmB resistance in C. auris and other fungal species.
RESUMO
Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.
Assuntos
Anfotericina B , Fluconazol , Humanos , Fluconazol/farmacologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida auris , Micafungina , Caspofungina , Testes de Sensibilidade Microbiana , Equinocandinas/farmacologiaRESUMO
Candida auris is a multidrug-resistant opportunistic fungal pathogen capable of causing serious infections and healthcare-associated outbreaks. Screening for colonization with C. auris has become routine and is recommended in many hospitals and healthcare facilities as an infection control and prevention strategy. Subsequently, and since there are currently no FDA-approved tests for this purpose, clinical microbiology laboratories have become responsible for developing protocols to detect C. auris using axial and inguinal screening swabs. In a College of American Pathologists-accredited large academic healthcare center setting, we implemented a laboratory-developed nucleic-acid amplification test for the detection of C. auris DNA. Our test validation evaluated the performance of the DiaSorin C. auris primer set used in a real-time qualitative PCR assay on the LIAISON MDX thermocycler with the Simplexa Universal Disc. The assay was highly sensitive and specific, with a limit of detection of 1-2 CFU/reaction, with no observed cross-reactivity with other Candida spp., bacterial skin commensal organisms or commonly encountered viruses. When run in parallel with a culture-based detection method, the PCR assay was 100% sensitive and specific. The assay was precise, with low variability between replicates within and between runs. Lastly, pre-analytical factors, including swab storage time, temperature, and transport media, were assessed and found to have no significant effect on the detection of C. auris at variable concentrations. Taken together, this study expands the available options for nucleic acid detection of C. auris and characterizes pre-analytical factors for implementation in both high- and low-volume laboratory settings. IMPORTANCE: This study overviews the validation and implementation of a molecular screening tool for the detection of Candida auris in a College of American Pathologist-accredited clinical laboratory. This molecular laboratory-developed test is both highly sensitive and specific and has significant health-system cost-savings associated with significantly reduced turn-around-time compared to traditional standard-of-care culture-based work up. This method and workflow is of interest to support clinical microbiology diagnostics and to help aid in hospital inpatient, and infection prevention control screening.
Assuntos
Candida auris , Candidíase , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Candidíase/diagnóstico , Candidíase/microbiologia , Candida auris/genética , Programas de Rastreamento/métodos , Pacientes Internados , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Hospitais , Candida/genética , Candida/isolamento & purificação , DNA Fúngico/genéticaRESUMO
Candida auris poses a global public health challenge, causing multiple outbreaks within healthcare facilities. Despite advancements in strain typing for various infectious diseases, a consensus on the genetic relatedness threshold for identifying C. auris transmission in local hospital outbreaks remains elusive. We investigated genetic variations within our local isolate collection using whole-genome-based single nucleotide polymorphism (SNP) phylogenetic analysis. A total of 74 C. auris isolates were subjected to whole-genome sequencing (WGS) and SNP phylogenetic analysis via the QIAGEN CLC Genomics Workbench. Isolates included known related strains from the same patient, strains from different hospitals, strains from our hospital patients with no epidemiological link, and 19 patient isolates from a recent C. auris outbreak. All but three isolates were identified to be Clade IV. By examining the genetic diversities of C. auris within patients and between patients, we identified a SNP variation range of 0-13 for identifying related isolates. During an outbreak investigation, utilizing this range, maximum likelihood phylogenetic analysis revealed two distinct clusters that aligned with the epidemiological links. Determining a SNP variation range to delineate genetic relatedness among isolates is crucial for the application of WGS and SNP phylogenetic analysis in identifying C. auris transmission during hospital outbreak investigations. The use of WGS SNP phylogenetic analysis via the CLC Genomics Workbench has emerged as a valuable method for typing C. auris in clinical microbiology laboratories.
Assuntos
Candida auris , Candidíase , Infecção Hospitalar , Surtos de Doenças , Filogenia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Humanos , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/transmissão , Candidíase/microbiologia , Candidíase/epidemiologia , Candidíase/transmissão , Candida auris/genética , Genoma Fúngico , Hospitais , Epidemiologia Molecular/métodos , GenótipoRESUMO
Candida auris is a multidrug-resistant fungal pathogen with a propensity to colonize humans and persist on environmental surfaces. C. auris invasive fungal disease is being increasingly identified in acute and long-term care settings. We have developed a prototype cartridge-based C. auris surveillance assay (CaurisSurV cartridge; "research use only") that includes integrated sample processing and nucleic acid amplification to detect C. auris from surveillance skin swabs in the GeneXpert instrument and is designed for point-of-care use. The assay limit of detection (LoD) in the skin swab matrix was 10.5 and 14.8 CFU/mL for non-aggregative (AR0388) and aggregative (AR0382) strains of C. auris, respectively. All five known clades of C. auris were detected at 2-3-5× (31.5-52.5 CFU/mL) the LoD. The assay was validated using a total of 85 clinical swab samples banked at two different institutions (University of California Los Angeles, CA and Wadsworth Center, NY). Compared to culture, sensitivity was 96.8% (30/31) and 100% (10/10) in the UCLA and Wadsworth cohorts, respectively, providing a combined sensitivity of 97.5% (40/41), and compared to PCR, the combined sensitivity was 92% (46/50). Specificity was 100% with both clinical (C. auris negative matrix, N = 31) and analytical (non-C. auris strains, N = 32) samples. An additional blinded study with N = 60 samples from Wadsworth Center, NY yielded 97% (29/30) sensitivity and 100% (28/28) specificity. We have developed a completely integrated, sensitive, specific, and 58-min prototype test, which can be used for routine surveillance of C. auris and might help prevent colonization and outbreaks in acute and chronic healthcare settings. IMPORTANCE: This study has the potential to offer a better solution to healthcare providers at hospitals and long-term care facilities in their ongoing efforts for effective and timely control of Candida auris infection and hence quicker response for any potential future outbreaks.
Assuntos
Candida auris , Candidíase , Sensibilidade e Especificidade , Humanos , Candidíase/diagnóstico , Candidíase/microbiologia , Candida auris/genética , Controle de Infecções/métodos , Monitoramento Epidemiológico , Pele/microbiologia , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Candida/isolamento & purificação , Candida/genética , Candida/classificaçãoRESUMO
Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.