Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Epidemiol Infect ; 147: e149, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30868983

RESUMO

Campylobacter jejuni is a leading cause of bacterial diarrhoea worldwide. The objective of this study was to examine the association between C. jejuni capsule types and clinical signs and symptoms of diarrhoeal disease in a well-defined birth cohort in Peru. Children were enrolled in the study at birth and followed until 2 years of age as part of the Malnutrition and Enteric Infections birth cohort. Associations between capsule type and clinical outcomes were assessed using the Pearson's χ2 and the Kruskal-Wallis test statistics. A total of 318 C. jejuni samples (30% from symptomatic cases) were included in this analysis. There were 22 different C. jejuni capsule types identified with five accounting for 49.1% of all isolates. The most common capsule types among the total number of isolates were HS4 complex (n = 52, 14.8%), HS5/31 complex (n = 42, 11.9%), HS15 (n = 29, 8.2%), HS2 (n = 26, 7.4%) and HS10 (n = 24, 6.8%). These five capsule types accounted for the majority of C. jejuni infections; however, there was no significant difference in prevalence between symptomatic and asymptomatic infection (all p > 0.05). The majority of isolates (n = 291, 82.7%) were predicted to express a heptose-containing capsule. The predicted presence of methyl phosphoramidate, heptose or deoxyheptose on the capsule was common.


Assuntos
Cápsulas Bacterianas/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Campylobacter jejuni/classificação , Diarreia/microbiologia , Diarreia/patologia , Genótipo , Infecções por Campylobacter/epidemiologia , Campylobacter jejuni/isolamento & purificação , Diarreia/epidemiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Peru/epidemiologia , Prevalência
2.
Genome Med ; 12(1): 11, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948471

RESUMO

BACKGROUND: Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically antimicrobial-sensitive, community-acquired "hypervirulent" strains. The emergence of hypervirulent AMR strains and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies worldwide. METHODS: We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool. RESULTS: K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus (iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern, we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these phenotypes among K. pneumoniae. CONCLUSIONS: K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates how genomics-based surveillance-reporting full molecular profiles including STs, AMR, virulence and serotype locus information-can help standardise comparisons between sites and identify regional differences in pathogen populations.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Resistência beta-Lactâmica/genética , Sudeste Asiático , Proteínas de Bactérias/genética , Genoma Bacteriano , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Mutação , Virulência/genética , beta-Lactamases/genética
3.
Gut Pathog ; 12: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308743

RESUMO

BACKGROUND: Campylobacter jejuni (C. jejuni) is one of the most common bacteria responsible for human gastroenteritis worldwide. The mode of human transmission is foodborne infections due to consumption of contaminated food, especially poultry. Type 6 secretion systems (T6SS) were described recently as Campylobacter virulence mechanisms. Furthermore, infection sequelae associated with neurological disorders like Guillain-Barré (GBS) and Miller Fisher (MF) syndromes can become serious health problems in some patients after Campylobacter gastroenteritis. Our objective was to determine the distribution of these virulence genes among C. jejuni isolated from stool of human diarrhea. METHODS: A total of 524 C. jejuni strains from travelers and pediatric cases of acute diarrhea in Thailand were selected for this study. All isolates belonged to one of 20 known capsule types and all were assayed by PCR for T6SS, a hemolysin co-regulated protein (hcp) gene, and GBS-associated genes (cgtA, cgtB, cstII HS19 and cstII HS2 ) which are involved in sialic acid production in the lipooligosaccharide (LOS) cores of C. jejuni. The distribution of these genes are summarized and discussed. RESULTS: Of all isolates with these 20 capsule types identified, 328 (62.6%) were positive for hcp, ranging from 29.2 to 100% among 10 capsule types. The GBS-associated LOS genes were detected among 14 capsule type isolates with 24.4% and 23.3% of C. jejuni isolates possessed either cstII HS19 or all three genes (cgtA, cgtB and cstII HS19 ), which were classified as LOS classes A and B whereas 9.2% of C. jejuni isolates possessing cstII HS2 were classified as LOS class C. The C. jejuni isolates of LOS A, B, and C together accounted for 56.9% of the isolates among 14 different capsule types while 31.1% of all C. jejuni isolates did not possess any GBS-associated genes. No significant difference was detected from C. jejuni isolates possessing GBS-associated LOS genes among travelers and children, but changes between those with hcp were significant (p < 0.05). CONCLUSIONS: Our results suggested a high diversity of hcp and GBS-associated LOS genes among capsule types of C. jejuni isolated from Thailand.

4.
Viruses ; 9(7)2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714913

RESUMO

Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor-recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.


Assuntos
Acinetobacter baumannii/virologia , Podoviridae/isolamento & purificação , Podoviridae/fisiologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Antibacterianos/farmacologia , DNA Viral/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana Múltipla , Genoma Viral , Especificidade de Hospedeiro , Humanos , Filogenia , Podoviridae/genética , Polissacarídeos Bacterianos/análise , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA