RESUMO
Thalassemia major is the most common monogenetic disorder worldwide, manifested as chronic hemolytic anemia. This condition leads to the need for chronic blood transfusion to be monitored for an iron overload that may be stored in several tissues and organs, including cardiomyocytes, that might cause a broad spectrum of cardiac iron toxicities such as heart failure conduction delays, myocarditis, and arrhythmias. Non-invasive imaging modalities have their benefits and limitations. Each modality complements and generates a comprehensive diagnostic and monitoring of cardiac siderosis in thalassemia major patients.
RESUMO
BACKGROUND: Heart failure related to cardiac siderosis remains a major cause of death in transfusion dependent anaemias. Replacement fibrosis has been reported as causative of heart failure in siderotic cardiomyopathy in historical reports, but these findings do not accord with the reversible nature of siderotic heart failure achievable with intensive iron chelation. METHODS: Ten whole human hearts (9 beta-thalassemia major, 1 sideroblastic anaemia) were examined for iron loading and fibrosis (replacement and interstitial). Five had died from heart failure, 4 had cardiac transplantation for heart failure, and 1 had no heart failure (death from a stroke). Heart samples iron content was measured using atomic emission spectroscopy. Interstitial fibrosis was quantified by computer using picrosirius red (PSR) staining and expressed as collagen volume fraction (CVF) with normal value for left ventricle <3%. RESULTS: The 9 hearts affected by heart failure had severe iron loading with very low T2* of 5.0 ± 2.0 ms (iron concentration 8.5 ± 7.0 mg/g dw) and diffuse granular myocardial iron deposition. In none of the 10 hearts was significant macroscopic replacement fibrosis present. In only 2 hearts was interstitial fibrosis present, but with low CVF: in one patient with no cardiac siderosis (death by stroke, CVF 5.9%) and in a heart failure patient (CVF 2%). In the remaining 8 patients, no interstitial fibrosis was seen despite all having severe cardiac siderosis and heart failure (CVF 1.86% ±0.87%). CONCLUSION: Replacement cardiac fibrosis was not seen in the 9 post-mortem hearts from patients with severe cardiac siderosis and heart failure leading to death or transplantation, which contrasts markedly to historical reports. Minor interstitial fibrosis was also unusual and very limited in extent. These findings accord with the potential for reversibility of heart failure seen in iron overload cardiomyopathy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00520559.
Assuntos
Transfusão de Sangue , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hemossiderose/metabolismo , Hemossiderose/patologia , Ferro/análise , Miocárdio/química , Miocárdio/patologia , Talassemia beta/terapia , Adolescente , Adulto , Autopsia , Compostos Azo/química , Transfusão de Sangue/mortalidade , Cardiomiopatias/mortalidade , Cardiomiopatias/cirurgia , Causas de Morte , Criança , Colágeno/análise , Corantes/química , Feminino , Fibrose , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/cirurgia , Transplante de Coração , Hemossiderose/mortalidade , Hemossiderose/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Espectrofotometria Atômica , Coloração e Rotulagem/métodos , Adulto Jovem , Talassemia beta/sangue , Talassemia beta/diagnóstico , Talassemia beta/mortalidadeRESUMO
Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We're therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of 'toxic' damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area.
RESUMO
The myocardium is particularly susceptible to complications from iron loading in thalassemia major. In the first years of life, severe anemia leads to high-output cardiac failure and death if not treated. The necessary supportive blood transfusions create loading of iron that cannot be naturally excreted, and this iron accumulates within tissues, including the heart. Free unbound iron catalyzes the formation of toxic hydroxyl radicals, which damage cells and cause cardiac dysfunction. Significant cardiac siderosis may present by the age of 10 and may lead to acute clinical heart failure, which must be treated urgently. Atrial fibrillation is the most frequently encountered iron-related arrhythmia. Iron chelation is effective at removing iron from the myocardium, at the expense of side effects that hamper compliance to therapy. Monitoring of myocardial iron content is mandatory for clinical management of cardiac risk. T2* cardiac magnetic resonance measures myocardial iron and is the strongest biomarker for prediction of heart failure and arrhythmic events. It has been calibrated to human myocardial tissue iron concentration and is highly reproducible across all magnetic resonance scanner vendors. As survival and patient age increases, endothelial dysfunction and diabetes may become new factors in the cardiovascular health of thalassemia patients. Promising new imaging technology and therapies could ameliorate the long-term prognosis.
Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/etiologia , Talassemia beta/complicações , Talassemia beta/tratamento farmacológico , Animais , Doenças Cardiovasculares/terapia , Humanos , Quelantes de Ferro/uso terapêutico , Imagem Cinética por Ressonância Magnética/métodos , Talassemia beta/terapiaRESUMO
In conditions requiring repeated blood transfusion or where iron metabolism is abnormal, heart failure may result from accumulation of iron in the heart (cardiac siderosis). Death due to heart failure from cardiac iron overload has accounted for considerable early mortality in ß-thalassemia major. The ability to detect iron loading in the heart by cardiovascular magnetic resonance using T2* sequences has created an opportunity to intervene in the natural history of such conditions. However, effective and well tolerated therapy is required to remove iron from the heart. There are currently three approved commercially available iron chelators: deferoxamine, deferiprone and deferasirox. We review the high quality randomized controlled trials in this area for iron chelation therapy in the management of cardiac siderosis.