Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
BMC Genomics ; 25(1): 670, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965476

RESUMO

BACKGROUND: The TCP (teosinte branched1/cincinnata/proliferating cell factor) family plays a prominent role in plant development and stress responses. However, TCP family genes have thus far not been identified in castor bean, and therefore an understanding of the expression and functional aspects of castor bean TCP genes is lacking. To identify the potential biological functions of castor bean (RcTCP) TCP members, the composition of RcTCP family members, their basic physicochemical properties, subcellular localizations, interacting proteins, miRNA target sites, and gene expression patterns under stress were assessed. RESULTS: The presence of 20 RcTCP genes on the nine chromosomes of castor bean was identified, all of which possess TCP domains. Phylogenetic analysis indicated a close relationship between RcTCP genes and Arabidopsis AtTCP genes, suggesting potential functional similarity. Subcellular localization experiments confirmed that RcTC01/02/03/10/16/18 are all localized in the nucleus. Protein interaction analysis revealed that the interaction quantity of RcTCP03/06/11 proteins is the highest, indicating a cascade response in the functional genes. Furthermore, it was found that the promoter region of RcTCP genes contains a large number of stress-responsive elements and hormone-induced elements, indicating a potential link between RcTCP genes and stress response functions. qRT-PCR showed that all RcTCP genes exhibit a distinct tissue-specific expression pattern and their expression is induced by abiotic stress (including low temperature, abscisic acid, drought, and high salt). Among them, RcTCP01/03/04/08/09/10/14/15/18/19 genes may be excellent stress-responsive genes. CONCLUSION: We discovered that RcTCP genes play a crucial role in various activities, including growth and development, the stress response, and transcription. This study provides a basis for studying the function of RcTCP gene in castor.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Ricinus communis , Estresse Fisiológico , Estresse Fisiológico/genética , Ricinus communis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica
2.
BMC Plant Biol ; 24(1): 493, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831288

RESUMO

Drought is one of the natural stresses that greatly impact plants. Castor bean (Ricinus communis L.) is an oil crop with high economic value. Drought is one of the factors limiting castor bean growth. The drought resistance mechanisms of castor bean have become a research focus. In this study, we used castor germinating embryos as experimental materials, and screened genes related to drought resistance through physiological measurements, proteomics and metabolomics joint analysis; castor drought-related genes were subjected to transient silencing expression analysis in castor leaves to validate their drought-resistant functions, and heterologous overexpression and backward complementary expression in Arabidopsis thaliana, and analysed the mechanism of the genes' response to the participation of Arabidopsis thaliana in drought-resistance.Three drought tolerance-related genes, RcECP 63, RcDDX 31 and RcA/HD1, were obtained by screening and analysis, and transient silencing of expression in castor leaves further verified that these three genes corresponded to drought stress, and heterologous overexpression and back-complementary expression of the three genes in Arabidopsis thaliana revealed that the function of these three genes in drought stress response.In this study, three drought tolerance related genes, RcECP 63, RcDDX 31 and RcA/HD1, were screened and analysed for gene function, which were found to be responsive to drought stress and to function in drought stress, laying the foundation for the study of drought tolerance mechanism in castor bean.


Assuntos
Arabidopsis , Secas , Ricinus communis , Sementes , Ricinus communis/genética , Ricinus communis/fisiologia , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Resistência à Seca
3.
Metab Eng ; 81: 197-209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072356

RESUMO

Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.


Assuntos
Ácidos Graxos não Esterificados , Yarrowia , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácido Oleico/genética , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Octoxinol/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Engenharia Metabólica
4.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675600

RESUMO

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Assuntos
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/síntese química , Alanina/química , Alanina/farmacologia , Phytophthora/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Floema/metabolismo , Floema/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Desenho de Fármacos , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química
5.
New Phytol ; 240(5): 1868-1882, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717216

RESUMO

Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ricinus communis , Endosperma/genética , Endosperma/metabolismo , Ricinus communis/genética , Ricinus communis/metabolismo , Arabidopsis/genética , Epigênese Genética , Impressão Genômica , Metilação de DNA/genética , Sementes/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Arabidopsis/metabolismo
6.
BMC Biol ; 20(1): 57, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227267

RESUMO

BACKGROUND: Understanding the processes governing angiosperm seed growth and development is essential both for fundamental plant biology and for agronomic purposes. Master regulators of angiosperm seed development are expressed in a seed-specific manner. However, it is unclear how this seed specificity of transcription is established. In some vertebrates, DNA methylation valleys (DMVs) are highly conserved and strongly associated with key developmental genes, but comparable studies in plants are limited to Arabidopsis and soybean. Castor bean (Ricinus communis) is a valuable model system for the study of seed biology in dicots and source of economically important castor oil. Unlike other dicots such as Arabidopsis and soybean, castor bean seeds have a relatively large and persistent endosperm throughout seed development, representing substantial structural differences in mature seeds. Here, we performed an integrated analysis of RNA-seq, whole-genome bisulfite sequencing, and ChIP-seq for various histone marks in the castor bean. RESULTS: We present a gene expression atlas covering 16 representative tissues and identified 1162 seed-specific genes in castor bean (Ricinus communis), a valuable model for the study of seed biology in dicots. Upon whole-genome DNA methylation analyses, we detected 32,567 DMVs across five tissues, covering ~33% of the castor bean genome. These DMVs are highly hypomethylated during development and conserved across plant species. We found that DMVs have the potential to activate transcription, especially that of tissue-specific genes. Focusing on seed development, we found that many key developmental regulators of seed/endosperm development, including AGL61, AGL62, LEC1, LEC2, ABI3, and WRI1, were located within DMVs. ChIP-seq for five histone modifications in leaves and seeds clearly showed that the vast majority of histone modification peaks were enriched within DMVs, and their remodeling within DMVs has a critical role in the regulation of seed-specific gene expression. Importantly, further experiment analysis revealed that distal DMVs may act as cis-regulatory elements, like enhancers, to activate downstream gene expression. CONCLUSIONS: Our results point to the importance of DMVs and special distal DMVs behaving like enhancers, in the regulation of seed-specific genes, via the reprogramming of histone modifications within DMVs. Furthermore, these results provide a comprehensive understanding of the epigenetic regulator roles in seed development in castor bean and other important crops.


Assuntos
Arabidopsis , Ricinus communis , Animais , Arabidopsis/genética , Ricinus communis/genética , Ricinus communis/metabolismo , Metilação de DNA , Epigênese Genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes/genética , Glycine max/genética
7.
BMC Plant Biol ; 22(1): 153, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35350998

RESUMO

BACKGROUND: Seed storage lipids are valuable for human diet and for the sustainable development of mankind. In recent decades, many lipid metabolism genes and pathways have been identified, but the molecular mechanisms that underlie differences in seed oil biosynthesis in species with developed embryo and endosperm are not fully understood. RESULTS: We performed comparative genome and transcriptome analyses of castor bean and rapeseed, which have high seed oil contents, and maize, which has a low seed oil content. These results revealed the molecular underpinnings of the low seed oil content in maize. First of all, transcriptome analyses showed that more than 61% of the lipid- and carbohydrate-related genes were regulated in castor bean and rapeseed, but only 20.1% of the lipid-related genes and 22.5% of the carbohydrate-related genes were regulated in maize. Then, compared to castor bean and rapeseed, fewer lipid biosynthesis genes but more lipid metabolism genes were regulated in the maize embryo. More importantly, most maize genes encoding lipid-related transcription factors, triacylglycerol (TAG) biosynthetic enzymes, pentose phosphate pathway (PPP) and Calvin Cycle proteins were not regulated during seed oil synthesis, despite the presence of many homologs in the maize genome. Additionally, we observed differential regulation of vital oil biosynthetic enzymes and extremely high expression levels of oil biosynthetic genes in castor bean, which were consistent with the rapid accumulation of oil in castor bean developing seeds. CONCLUSIONS: Compared to high-oil seeds (castor bean and rapeseed), less oil biosynthetic genes were regulated during the seed development in low-oil seed (maize). These results shed light on molecular mechanisms of lipid biosynthesis in maize, castor bean, and rapeseed. They can provide information on key target genes that may be useful for future experimental manipulation of oil production in oil plants.


Assuntos
Brassica napus , Ricinus communis , Brassica napus/genética , Ricinus communis/genética , Óleos de Plantas/metabolismo , Sementes , Transcriptoma , Zea mays/genética , Zea mays/metabolismo
8.
Int J Phytoremediation ; 24(9): 933-944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34634959

RESUMO

Heavy metals pollution represents a serious issue for cultivable lands and ultimately threatens the worldwide food security. Lead (Pb) is a menacing metal which induces toxicity in plants and humans. Lead toxicity reduces the photosynthesis in plants, resulting in the reduction of plant growth and biomass. The excessive concentration of Pb in soil accumulates in plants body and enters into food chain, resulting in health hazards in humans. The phytoremediation is eco-friendly and cost-efficient technique to clean up the polluted soils. However, to the best of our Knowledge, there are very few reports addressing the enhancement of the phytoremediation potential of castor bean plants. Therefore, the present study aimed to investigate the potential role of glutathione (GSH), as a promising plant growth regulator, in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants grown under lead stress conditions. The results indicated that Pb stress reduced the growth, biomass, chlorophyll pigments and gas exchange attributes of castor bean plants, causing oxidative damage in plants. Pb stress induced the oxidative stress markers and activities of antioxidant enzymes. On the other hand, the application of GSH reduced oxidative stress markers, but enhanced the growth, biomass, photosynthetic pigments, gas exchange attributes, Pb accumulation and antioxidant enzymes activities of lead-stressed castor bean plants. Both Pb uptake and Pb accumulation were increased by increasing concentrations of Pb in a dose-additive manner. However, at high dose of exogenous GSH (25 mg L-1) further enhancements were recorded in the Pb uptake in shoot by 48% and in root by 46%; Pb accumulation was further enhanced in shoot by 98% and in root by 101% in comparison with the respective control where no GSH was applied. Taken together, the findings revealed the promising role of GSH in enhancing the lead stress tolerance and phytoremediation potential of castor bean (Ricinus communis) plants cultivated in Pb-polluted soils through regulating leaf gas exchange, antioxidants machinery, and metal uptake.


The excessive concentration of Lead (Pb) in soil accumulates in plants body and enters into food chain, resulting in health hazards in humans. Phytoremediation is eco-friendly and cost-efficient technique to clean up the polluted soils. However, to the best of our knowledge, there are very few reports addressing the enhancement of the phytoremediation potential of castor bean plants. Therefore, the novelty of this research is that this research studied the potential role of glutathione (GSH), as a promising plant growth regulator, in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants grown under lead stress conditions. The results indicated that Pb stress reduced the growth, biomass, chlorophyll pigments and gas exchange attributes of castor bean plants, causing oxidative damage in plants. Pb stress induced the oxidative stress markers and activities of antioxidant enzymes. On the other hand, the application of GSH reduced oxidative stress markers, but enhanced the growth, biomass, photosynthetic pigments, gas exchange attributes, Pb accumulation and antioxidant enzymes activities of lead-stressed castor bean plants. Taken together, the findings revealed the promising role of GSH in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants cultivated in lead-polluted soils.


Assuntos
Ricinus communis , Poluentes do Solo , Antioxidantes , Biodegradação Ambiental , Glutationa , Chumbo/toxicidade , Plantas , Ricinus , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Trop Anim Health Prod ; 53(5): 506, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623524

RESUMO

The objective of this study was to evaluate diets containing monensin (MON) associated or not with virginiamycin (VM) or functional oil based on cashew nut shell and castor beans (FOcc) for beef cattle in feedlots on nutritional (intake and digestibility) and productive parameters. A total of 1410 non-castrated Nellore cattle were selected, with an average age of 18 months and with an initial mean body weight (BW) of 305 ± 41.52 kg. The diet showed a roughage to concentrate ratio of 23:77, with the supply of corn silage as a source of roughage. The following additive inclusions in the diet were evaluated: (1) MON: 27 mg MON/kg dry matter (DM); (2) MON + VM: 22 mg MON/kg DM + 19 mg VM/kg DM; and (3) MON + FOcc: 22 mg MON/kg DM + 500 mg FOcc/kg DM. Statistical analyses were obtained through a linear model using initial BW and days of feedlot as covariables and comparisons between treatments using mutually orthogonal linear contrasts with a 5% significance level. The association or not of MON with VM or FOcc does not affect any of the nutritional and productive parameters evaluated. Animals that receive diets with MON + VM have higher average daily gain and feed efficiency (FE) than those that receive MON + FOcc without showing differences in nutritional parameters. The supply of MON associated with VM or FOcc does not increase intake and productive performance and, consequently, efficiency of feedlot beef cattle. However, in the case of use associated with MON, the VM provides greater performance than FOcc without changing food intake.


Assuntos
Monensin , Virginiamicina , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta , Monensin/farmacologia
10.
Plant Cell Physiol ; 61(6): 1120-1133, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186723

RESUMO

Soil salinity is a major source of abiotic plant stress, adversely affecting plant growth, development and productivity. Although the physiological and molecular mechanisms that underlie plant responses to salt stress are becoming increasingly understood, epigenetic modifications, such as histone methylations and their potential regulation of the transcription of masked genes at the genome level in response to salt stress, remain largely unclear. Castor bean, an important nonedible oil crop, has evolved the capacity to grow under salt stress. Here, based on high-throughput RNA-seq and ChIP-seq data, we systematically investigated changes in genomic transcription and histone methylation using typical histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 tri-methylated lysine 27 (H3K27me3) markers in castor bean leaves subjected to salt stress. The results showed that gain or loss of histone methylation was closely associated with activated or repressed gene expression, though variations in both transcriptome and histone methylation modifications were relatively narrow in response to salt stress. Diverse salt responsive genes and switched histone methylation sites were identified in this study. In particular, we found for the first time that the transcription of the key salt-response regulator RADIALIS-LIKE SANT (RSM1), a MYB-related transcription factor involved in ABA(abscisic acid)-mediated salt stress signaling, was potentially regulated by bivalent H3K4me3-H3K27me3 modifications. Combining phenotypic variations with transcriptional and epigenetic changes, we provide a comprehensive profile for understanding histone modification, genomic transcription and their associations in response to salt stress in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Ricinus communis/metabolismo , Transcrição Gênica , Ricinus communis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Código das Histonas , Metilação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estresse Salino , Transcrição Gênica/fisiologia
11.
Int J Legal Med ; 134(6): 2133-2141, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32548760

RESUMO

A case report of a 25-year-old man who committed suicide by intravenous injection himself of an aqueous home-made castor bean extract is presented. The patient was hospitalized and treated symptomatically and was released at its own request fourth day after intoxication. The next day, the patient's condition deteriorated, and he died 6 days after intoxication even though he was given medical care. Case history, autopsy, and toxicological investigation of ante- and post-mortem collected materials are described. Blood and urine collected from the patient ante-mortem and other several biological materials (namely blood from the upper and lower limb, blood from the right and left ventricle, pericardial fluid, vitreous humour, liver, kidney, and spleen) were collected post-mortem during autopsy. Liquid-liquid extraction procedure followed by high-performance liquid chromatography tandem mass spectrometry analysis for identification and determination of ricinine as a biomarker of ricin/castor seed intoxication was developed and validated. The method was applied on analysis of collected ante- and post-mortem biological materials. The post-mortem contents of ricinine in organs (namely the liver, kidney, and spleen) are firstly reported. The obtained results indicated approximately uniform distribution of ricinine (concentration level about 1 ng mL-1) in the body after death. In addition, the GC-MS method was also applied for the analysis of extract of castor seed and the patient's urine, to demonstrate alternative possibility for identification of ricinine for clinical and forensic purposes.


Assuntos
Alcaloides/análise , Alcaloides/intoxicação , Injeções Intravenosas , Extratos Vegetais/química , Piridonas/análise , Piridonas/intoxicação , Ricinus/química , Adulto , Autopsia , Cromatografia Líquida de Alta Pressão , Evolução Fatal , Toxicologia Forense , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino
12.
Ecotoxicol Environ Saf ; 203: 110983, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678760

RESUMO

Chelating agents have been considered as an important phytoremediation strategy to enhance heavy metal extraction from contaminated soil. A pot experiment was conducted to explore the effects of low molecular weight organic acids (LMWOAs) on the phytoremediation efficiency of copper (Cu) by castor bean, and soil enzyme activities. Results indicated that the addition of all the three kinds of LMWOAs (citric, tartaric, oxalic acids) did not decrease the biomass of castor bean, despite the fact they reduced the concentration of chlorophyll-a in leaves compared to the control. The Cu concentrations in the roots and shoots significantly increased by 6-106% and 5-148%, respectively, in the LMWOAs treatments so that the total accumulation of Cu by whole plants in all the LMWOAs treatments increased by 21-189% in comparison with the control. The values of the translocation factor (TF) and bio-concentration factor (BCF) of Cu in castor bean also rose following the addition of LMWOAs, indicating that the LMWOAs enhanced the uptake and transportation of Cu. Moreover, the application of LMWOAs did not significantly change the soil pH but significantly increased the activity of soil enzymes (urease, catalase, and alkaline phosphatase). The addition of exogenous LMWOAs increased the available Cu significantly in the soil, thus promoted the phytoextraction efficiency of Cu by castor bean. These results will provide some new insights into the practical use of LMWOAs for the phytoremediation of heavy-metal-contaminated soil employing castor bean.


Assuntos
Bioacumulação , Quelantes/química , Cobre/metabolismo , Compostos Orgânicos/química , Ricinus communis/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Ácidos/administração & dosagem , Ácidos/química , Biodegradação Ambiental , Ricinus communis/efeitos dos fármacos , Quelantes/administração & dosagem , Peso Molecular , Compostos Orgânicos/administração & dosagem
13.
Ecotoxicology ; 29(2): 129-139, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865512

RESUMO

Rapid growth in the oil industry has been accompanied concomitant increases in risks of spills or leaks triggered by natural or anthropogenic causes that cause soil changes and plant damage. Bio-scavenging and phytoremediation plants are important tools for identifying pollutants and mitigating environmental damage. The objective of this study was to evaluate the phytoremediation potential of Ricinus communis cultivated in soils contaminated with mineral oil, and to determine the possible visual, anatomical and physiological effects. R. communis seeds were pre-germinated in individual pots containing Red Latosol contaminated with Lubrax Essential SL (15W-40) mineral oil at concentrations of 0 (control), 5, 10, and 15 g kg-1. After exposure to treatments, emergency evaluations were performed, and after 45 days of cultivation, visual, morphoanatomical, physiological and oil removal effects were evaluated. There was no difference in emergence showed between treatments. Visual effects were characterized by necrosis and chlorosis formation in R. communis, evidenced on the 45th day of cultivation in all treatments tested, followed by parenchymal tissue alterations with collapsed cell formation and damage to photosynthesis with increasing doses. We found that R. communis removed up to 81% of hydrocarbons in soils, classifying it as potential phytoremediator of contaminated soils. The strong correlation between the variables suggests that R. communis can be used as an indicator of pollutant action.


Assuntos
Biodegradação Ambiental , Óleo Mineral/metabolismo , Ricinus/fisiologia , Poluentes do Solo/metabolismo
14.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952322

RESUMO

Cellular autophagy is a widely-occurring conserved process for turning over damaged organelles or recycling cytoplasmic contents in cells. Although autophagy-related genes (ATGs) have been broadly identified from many plants, little is known about the potential function of autophagy in mediating plant growth and development, particularly in recycling cytoplasmic contents during seed development and germination. Castor bean (Ricinus communis) is one of the most important inedible oilseed crops. Its mature seed has a persistent and large endosperm with a hard and lignified seed coat, and is considered a model system for studying seed biology. Here, a total of 34 RcATG genes were identified in the castor bean genome and their sequence structures were characterized. The expressional profiles of these RcATGs were examined using RNA-seq and real-time PCR in a variety of tissues. In particular, we found that most RcATGs were significantly up-regulated in the later stage of seed coat development, tightly associated with the lignification of cell wall tissues. During seed germination, the expression patterns of most RcATGs were associated with the decomposition of storage oils. Furthermore, we observed by electron microscopy that the lipid droplets were directly swallowed by the vacuoles, suggesting that autophagy directly participates in mediating the decomposition of lipid droplets via the microlipophagy pathway in germinating castor bean seeds. This study provides novel insights into understanding the potential function of autophagy in mediating seed development and germination.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Genômica/métodos , Ricinus communis/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/classificação , Proteínas Relacionadas à Autofagia/metabolismo , Ricinus communis/metabolismo , Óleo de Rícino/metabolismo , Endosperma/genética , Endosperma/metabolismo , Germinação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Gotículas Lipídicas/metabolismo , Filogenia , Sementes/genética , Sementes/metabolismo
15.
Plant J ; 95(2): 324-340, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738104

RESUMO

Long non-coding RNAs (lncRNAs) serve as versatile regulators of plant growth and development. The potential functions and inheritance patterns of lncRNAs, as well as the epigenetic regulation of lncRNA itself, remain largely uncharacterized in plant seeds, especially in the persistent endosperm of the dicotyledons. In this study, we investigated diverse RNA-seq data and catalogued 5356 lncRNAs in castor bean seeds. A small fraction of lncRNAs were transcribed from the same direction as the promoters of protein-coding genes (PCgenes) and exhibited strongly coordinated expression with the nearby PCgene. Co-expression analysis with weighted gene co-expression network analysis (WGCNA) showed these lncRNAs to be involved in differential transcription networks between the embryo and endosperm in the early developing seed. Genomic DNA methylation analyses revealed that the expression level of lncRNAs was tightly linked to DNA methylation and that endosperm hypomethylation could promote the expression of linked lncRNAs. Intriguingly, upon hybridization, most lncRNAs with divergent genome sequences between two parents could be reconciled and were expressed according to their parental genome contribution; however, some deviation in the expression of allelic lncRNAs was observed and found to be partially dependent on parental effects. In triploid endosperm, the expression of most lncRNAs was not dosage sensitive, as only 20 lncRNAs had balanced dosage. Our findings not only demonstrate that lncRNAs play potential roles in regulating the development of castor bean endosperm and embryo, but also provide novel insights into the parental effects, allelic expression and epigenetic regulation of lncRNAs in dicotyledonous seeds.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , RNA Longo não Codificante/genética , Ricinus communis/genética , Metilação de DNA , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Sementes/metabolismo
16.
J Insect Sci ; 19(2)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865781

RESUMO

Holotrichia parallela damages seriously on peanut (Arachis hypogaea) pods. Elucidation of its flight and walking performance in the presence of different plants may provide an insight in its host selection process and an explanation to its strong olfactory preference to an attractive nonhost, castor bean (Ricinus communis). We determined the relationships among flight performance, mate choice, and body weight of H. parallela beetles, and then investigated their flight and walking patterns in the presence of known hosts and attractive nonhost plants using a flight mill and a locomotion compensator, respectively. Body weights were not related to mating success, regardless of sex. The flight proportion of selected females drastically decreased compared with nonselected females, nonselected males, and selected males. Within mated males, heavier individuals exhibited poorer flight performance than lighter ones. In flight bioassay, peanut showed an arrestment effect on virgin females. For walking activity factors (distance, time, and speed), the host plants velvetleaf (Abutilon theophrasti) and Siberian elm (Ulmus pumila) elicited the strongest responses in females and males, respectively. Interestingly, the most preferred adult host, Siberian elm, and the nonhost, castor bean, elicited the highest values of two orientation factors (orientation and upwind length) in females. The chemical similarity hypothesis, which states that feeding or oviposition of insects mistakenly on nonhost can be traced to their chemical similarity to actual hosts, could explain the attraction of H. parallela to castor bean.


Assuntos
Peso Corporal , Besouros/fisiologia , Voo Animal , Herbivoria , Preferência de Acasalamento Animal , Animais , Feminino , Magnoliopsida , Masculino , Odorantes , Fatores Sexuais , Caminhada
17.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875738

RESUMO

The physiological and molecular basis of seed size formation is complex, and the development of seed coat (derived from integument cells) might be a critical factor that determines seed size formation for many endospermic seeds. Castor bean (Ricinus communis L.), a model system of studying seed biology, has large and persistent endosperm with a hard seed coat at maturity. Here, we investigated the potential molecular mechanisms underlying seed size formation in castor bean by comparing the difference between global gene expression within developing seed coat tissues between the large-seed ZB107 and small-seed ZB306. First, we observed the cell size of seed coat and concluded that the large seed coat area of ZB107 resulted from more cell numbers (rather than cell size). Furthermore, we found that the lignin proportion of seed coat was higher in ZB306. An investigation into global gene expression of developing seed coat tissues revealed that 815 genes were up-regulated and 813 were down-regulated in ZB306 relative to ZB107. Interestingly, we found that many genes involved in regulating cell division were up-regulated in ZB107, whereas many genes involved in regulating lignin biosynthesis (including several NAC members, as well as MYB46/83 and MYB58/63) and in mediating programmed cell death (such as CysEP1 and ßVPE) were up-regulated in ZB306. Furthermore, the expression patterns of the genes mentioned above indicated that the lignification of seed coat tissues was enhanced and occurred earlier in the developing seeds of ZB306. Taken together, we tentatively proposed a potential scenario for explaining the molecular mechanisms of seed coat governing seed size formation in castor bean by increasing the cell number and delaying the onset of lignification in seed coat tissues in large-seed ZB107. This study not only presents new information for possible modulation of seed coat related genes to improve castor seed yield, but also provides new insights into understanding the molecular basis of seed size formation in endospermic seeds with hard seed coat.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Ricinus communis/anatomia & histologia , Sementes/anatomia & histologia , Ricinus communis/genética , Ricinus communis/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/biossíntese , Filogenia , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA
18.
Planta ; 247(3): 559-572, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29119268

RESUMO

MAIN CONCLUSION: Nuclear Factor-Y transcription factors, which function in regulating seed development (including storage reservoir accumulation) and responding to abiotic stresses, were identified and characterized in castor bean. Nuclear Factor-Y (NF-Y) transcription factors in plants contain three subunits (NF-YA, NF-YB and NF-YC), and function as a heterodimer or heterotrimer complex in regulating plant growth, development and response to stresses. Castor bean (Ricinus communis, Euphorbiaceae) one of the most economically important non-edible oilseed crops, able to grow in diverse soil conditions and displays high tolerance to abiotic stresses. Due to increasing demands for its seed oils, it is necessary to elucidate the molecular mechanism underlying the regulation of growth and development. Based on the available genome data, we identified 25 RcNF-Y members including six RcNF-YAs, 12 RcNF-YBs and seven RcNF-YCs, and characterized their gene structures. Yeast two-hybrid assays confirmed the protein-protein interactions among three subunits. Using transcriptomic data from different tissues, we found that six members were highly or specifically expressed in endosperms (in particular, two LEC1-type members RcNF-YB2 and RcNF-YB12), implying their involvement in regulating seed development and storage reservoir accumulation. Further, we investigated the expression changes of RcNF-Y members in two-week-old seedlings under drought, cold, hot and salt stresses. We found that the expression levels of 20 RcNF-Y members tested were changed and three RcNF-Y members might function in response to abiotic stresses. This study is the first reported on genomic characterization of NF-Y transcription factors in the family Euphorbiaceae. Our results provide the basis for improved understanding of how NF-Y genes function in the regulation of seed development and responses to abiotic stresses in both castor bean and other plants in this family.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Genes de Plantas/genética , Ricinus/genética , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/fisiologia , Regulação da Expressão Gênica de Plantas , Filogenia , Ricinus/metabolismo , Alinhamento de Sequência , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
19.
Ecotoxicol Environ Saf ; 144: 522-530, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28675866

RESUMO

Soils impacted by metallurgy activities pose serious risks to the health of exposed populations, whether by ingestion of soil or contaminated food and water. The municipality of Santo Amaro, Bahia state, presents the most important case of human lead contamination in Brazil. It occurred because of inadequate slag disposal. The aims of this research were to: (i) determine the environmentally available concentrations and the distribution of As, Cd, Pb, and Zn in soil fractions; (ii) estimate the non-carcinogenic and carcinogenic risks of these elements for children; and (iii) to evaluate the use of corn (Zea mays) and castor bean (Ricinus communis) either for phytoextraction induced by chelating agents or phytostabilization. Our data demonstrated that the environmentally available concentrations of As, Cd, Pb, and Zn in soils surrounding the Pb smelting plant are among the highest that have been reported. Apart from Cd, sequential extraction demonstrated that most metals are in recalcitrant forms in the soil. However, the daily exposure of children to Pb, Zn, Cd, and As exceeded the acceptable daily intake as established by the World Health Organization. Non-carcinogenic risk modeling indicated probable adverse health effects from chronic exposure to soil Pb. The mean estimated time for remediation of the area using phytoextraction was high, ranging from 76 to 259 years; therefore, this is not a viable alternative for remediating soils in the studied area. However, good development in the contaminated soil along with restriction of the metal(oid) translocation to shoots enables castor bean to phytostabilize metal(oid)s. Additionally, castor bean cultivation may be an alternative for an economic return because of biofuel production.


Assuntos
Arsênio/análise , Metais Pesados/análise , Ricinus/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Zea mays/crescimento & desenvolvimento , Biodegradação Ambiental , Brasil , Criança , Cidades , Monitoramento Ambiental , Humanos , Metalurgia , Medição de Risco
20.
J Emerg Med ; 53(5): e67-e71, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28987302

RESUMO

BACKGROUND: Ricin is a protein toxin derived from the castor bean plant Ricinus communis. Several cases secondary to its consumption have been published and, more recently, its use as a potential bioterrorism agent has also been reported. Oral absorption of ricin is highly erratic, leading to a wide spectrum of symptoms. In addition, conventional urine drug screening tests will not be able to detect this compound, posing a diagnostic challenge. CASE REPORT: A male teenager intended to die by ingesting 200 castor beans after mixing and blending them with juice. Eight hours later, he presented with weakness, light-headedness, nausea, and vomiting and sought medical treatment. The patient was admitted and treated conservatively. An immune-based standard urine toxicology drug screen panel was reported as negative. A comprehensive untargeted urine drug screen test showed the presence of ricinine, a surrogate marker of ricin intoxication. He was transferred to the psychiatric service 3 days after admission. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case highlights the importance of knowing the peculiar pharmacokinetic properties of ricin after oral ingestion of castor beans and toxin release through mastication. Emergency physicians should be aware that oral absorption of ricin is dependent on several factors, such type and size of seeds and the geographic harvesting region, making it extremely difficult to estimate its lethality based solely on the number of ingested beans. Finally, comprehensive untargeted urine drug screening testing is highly valuable as a diagnostic tool in this context.


Assuntos
Ingestão de Alimentos/psicologia , Ricina/química , Ricinus communis/intoxicação , Adolescente , Antídotos/uso terapêutico , Ricinus communis/química , Carvão Vegetal/uso terapêutico , Depressão/complicações , Depressão/psicologia , Tontura/etiologia , Serviço Hospitalar de Emergência/organização & administração , Lavagem Gástrica/métodos , Humanos , Masculino , Debilidade Muscular/etiologia , Náusea/etiologia , Intoxicação , Ricina/efeitos adversos , Ricina/intoxicação , Suicídio , Vômito/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA