Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 1): 129213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184052

RESUMO

The wound therapy based on antibiotic delivery inevitably leads to the emergence of drug resistance. Hydrogel biomaterials with inherent antibacterial activities have emerged as promising candidates for addressing this issue. However, developing an inherently antibacterial hydrogel through simple and facile strategies to promote localized wound infection healing remains a challenge. In this study, we successfully constructed antimicrobial cationic hydrogels with self-healing and injectable properties through physically and chemically dual-crosslinked networks. The networks were formed by the copolymers poly[(di(ethylene glycol) methyl ether methacrylate)-co-(4-formylphenyl methacrylate)-co-(2-(methacryloyloxy)ethyl]trimethylammonium chloride solution)] (PDFM) and poly[(di(ethylene glycol) methyl ether methacrylate)-co-(2-aminoethyl methacrylate hydrochloride)-co-(2-(((6-(6-methyl-4[1H]pyrimidionylureido) hexyl)carbamoyl)oxy)ethyl methacrylate)] (PDAU). The hydrogel systems effectively facilitate the regeneration and healing of infected wounds through the contact bactericidal feature of quaternary ammonium cations. The presence of Schiff base bonds in the injectable hydrogels imparts remarkable pH responsiveness and self-healing properties. In vitro experiments verified their intrinsic antibacterial activities along with their favorable cytocompatibility and hemocompatibility in both in vitro and in vivo. In addition, the hydrogel significantly accelerated the healing of bacterially infected in a full-thickness skin wound. This facilely prepared dual-crosslinked hydrogel, without antibiotics loading, holds significant prospects for treating infected wounds.


Assuntos
Anti-Infecciosos , Éteres Metílicos , Hidrogéis/farmacologia , Hidrogéis/química , Anti-Infecciosos/farmacologia , Cicatrização , Antibacterianos/química , Metacrilatos/farmacologia , Etilenoglicóis
2.
J Appl Polym Sci ; 141(9)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38962028

RESUMO

In this study, we use modified cationic nanocarriers as vehicles for the intracellular delivery of therapeutic siRNA. After developing nanocarrier formulations with appropriate pKa, size, swellability, and cytocompatibility, we investigated the importance of siRNA loading methods by studying the impact of the pH and time over which siRNA is loaded into the nanocarriers. We concentrate on diffusion-based loading in the presence and absence of electrostatic interactions. siRNA release kinetics were studied using samples prepared from nanocarriers loaded by both mechanisms. In addition, siRNA delivery was evaluated for two formulations. While previous studies were conducted with samples prepared by siRNA loading at low pH values, this research provides evidence that loading conditions of siRNA affect the release behavior. This study concludes that this concept could prove advantageous for eliciting prolonged intracellular release of nucleic acids and negatively charged molecules, effectively decreasing dose frequency and contributing to more effective therapies and improved patient outcomes. In addition, our findings could be leveraged for enhanced control over siRNA release kinetics, providing novel methods for the continued optimization of cationic nanoparticles in a wide array of RNA interference-based applications.

3.
Gels ; 10(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38786228

RESUMO

This study explores the synthesis and modification of poly(N-vinylformamide-co-N-hydroxyethyl acrylamide) (poly(NVF-co-HEA)) hydrogels for cosmetic applications. Poly(NVF-co-HEA) hydrogels were produced followed by an acid hydrolysis reaction to produce poly(NVF-co-VAm-co-HEA) hydrogels, introducing poly(vinyl amine) (PVAm) into the structure. This modification considerably alters the hydrogels' properties, yielding materials with over 96% water content, predominantly in the form of non-freezing or free water, which is beneficial in the uptake and release of hydrophilic species. The primary amine groups from inclusion of VAm also improved the mechanical properties, as evidenced by an 8-fold increase in Young's modulus. The hydrogels also possessed pH-responsive behavior, which was particularly noticeable under acidic and basic conditions, where a large decrease in water content was observed (40% to 75% reduction). Characterizing the hydrogels' release capabilities involved using organic dyes of different functional groups and sizes to examine the pH impact on release. The results indicated that hydrolyzed hydrogels interacted more effectively with charged species, highlighting their suitability for pH-responsive delivery. The release of cosmetic active ingredients was also demonstrated through the controlled release of Liquid Azelaic™, specifically potassium azeloyl diglycinate (PAD). Our findings reveal that the hydrolyzed hydrogels exhibit superior burst release, especially under alkaline conditions, suggesting their suitability for cosmetic applications where controlled, pH-responsive delivery of active ingredients is desired. Overall, this investigation highlights the potential of hydrolyzed poly(NVF-co-HEA) hydrogels in cosmetic applications. Their ability to combine high water content with mechanical integrity, along with their pH-responsive release ability, allows for use in cosmetic formulations.

4.
Toxics ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37112539

RESUMO

Nitrites are metastable anions that are derived from the oxidation of ammonia by agricultural pollution, sewage, decaying protein, and other nitrogen sources. They are a recognized environmental issue due to their role in eutrophication, as well as in surface and groundwater contamination, being toxic to almost all living creatures. Recently, we reported on the high efficiency of two cationic resins (R1 and R2) forming hydrogels (R1HG and R2HG) by dispersion in water in removing anionic dyes from water by electrostatic binding. Here, aiming at developing adsorbent materials for nitrite remediation, R1, R2, R1HG, and R2HG were first tested in adsorption experiments in batches monitored by UV-Vis methods, using the Griess reagent system (GRS) in order to assess their removal efficiency by contact over time. Particularly, samples of water appositely contaminated with nitrites were analyzed by UV-Vis before and during treatment with the hydrogels. The initial concentration of nitrites was quantified (118 mg/L). Then, the removal of nitrites over time, the removal efficiency of R1HG (89.2%) and of R2HG (89.6%), their maximum adsorption (21.0 mg/g and 23.5 mg/g), as well as the adsorption kinetics and mechanisms were evaluated. Additionally, R1HG- and R2HG-based columns (h = 8-10 cm, ØE = 2 cm) mimicking mini-scale decontamination systems by filtration were used to rapidly filter samples of water polluted with nitrite that were under pressure. R1HG and R2GH were capable of totally removing nitrites (99.5% and 100%) from volumes of nitrite solutions that were 118 mg/L that is 10 times the volumes of resins used. Additionally, when extending filtration to increasing volumes of the same nitrite solution up to 60 times the volume of resins used, the removal efficiently of R1HG decreased, and that of R2HG remained stable at over 89%. Interestingly, both the worn-out hydrogels were regenerable by 1% HCl washing, without a significant reduction in their original efficiency. There is a lack of studies in the literature reporting on novel methods to remove nitrite from water. R1HG and especially R2HG represent low-cost, up-scalable, and regenerable column-packing materials with promise for applications in the treatment of drinking water contaminated by nitrites.

5.
ACS Appl Mater Interfaces ; 14(9): 11144-11155, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195389

RESUMO

Bacterial infections are a common problem associated with wound treatment that imposes a significant burden on healthcare systems and patients. As a result, healthcare providers urgently need new treatment strategies to protect people. Hydrogel biomaterials with inherent antimicrobial properties offer an attractive and viable solution to this issue. Here, for the first time, we have developed a new efficient synthetic strategy to prepare cationic hydrogels (PHCI) with intrinsically efficient antimicrobial properties by chemically cross-linking trans-1,4-cyclohexanediamine with 1,3-dibromo-2-propanol using a condensation reaction without the use of toxic cross-linking agents. As expected, the prepared PHCI hydrogel possessed an inherent antibacterial ability that can adsorb and kill Staphylococcus aureus and Escherichia coli electrostatically. Notably, in vivo experiments on normal and diabetic rat models confirmed that the PHCI hydrogel can quickly stop bleeding, efficiently kill bacteria, promote the conversion of macrophages from the proinflammatory M1 phenotype to the repaired M2 phenotype, and accelerate collagen deposition and blood vessel formation, thereby achieving rapid wound healing. Overall, this work presents an effective antibacterial dressing that might provide a facile but effective approach for clinical wound management.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hidrogéis/uso terapêutico , Masculino , Camundongos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/patologia
6.
Gels ; 8(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36547352

RESUMO

Cationic gels have seen increasing interest in recent years for 2D cell cultivation since they may represent an alternative to the well-known RGD-peptide motif functionalized gels. However, few hydrogel systems with adjustable cationic strength have been fabricated and investigated so far. In this work, eight gels with defined concentrations of cationic groups, two of which also contained the RGD peptide, were prepared from three well-defined, soluble precursor copolymers with thiol-functionalities and PEGDA3500 as a crosslinker via thiol-ene chemistry. Live/dead stainings of U-251-MG cells on the hydrogels with different concentrations of the cationic motif were made after 3 days and 7 days of cultivation. The results show a high dependence of the number of adhesive cells and their morphology, cluster versus spread cells, on the concentration of cationic groups in the gel. This effect was more pronounced when the gels were not further dialyzed before usage. In addition, a synergistic effect of the two motifs, cationic group and RGD peptide, could be demonstrated, which together induce stronger cell adhesion than either motif alone.

7.
ACS Appl Mater Interfaces ; 13(31): 37724-37733, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338498

RESUMO

Solar-driven steam generation has been recognized as a sustainable and low-cost solution to freshwater scarcity using abundant solar energy. To harvest freshwater, various interfacial evaporators with rational designs of photothermal materials and structures have been developed concentrating on increasing the evaporation rate in the past few years. However, pathogenic microorganism accumulation on the evaporators by long-duration contact with natural water resources may lead to the deterioration of water transportation and the reduction of the evaporation rate. Here, we develop cationic photothermal hydrogels (CPHs) based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) and photothermal polypyrrole (PPy) with bacteria-inhibiting capability for freshwater production via solar-driven steam generation. A rapid water evaporation rate of 1.592 kg m-2 h-1 under simulated solar irradiation is achieved with CPHs floating on the water surface. Furthermore, we find that CPHs possess nearly 100% antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The significant bacteria-inhibiting capability is mainly attributed to the large number of ammonium groups on the CPH network. Moreover, we show that CPHs exhibit good applicability with stable evaporation in natural lake water over 2 weeks, and the number of bacteria in purified lake water is significantly reduced. The device based on CPHs can achieve ∼0.49 kg m-2 h-1 freshwater production from lake water under natural sunlight. This study provides an attractive strategy for the evaporator to inhibit biological contamination and a potential way for long-term stable freshwater production from natural water resources in practical application.


Assuntos
Antibacterianos/farmacologia , Água Doce/química , Hidrogéis/farmacologia , Vapor , Antibacterianos/química , Antibacterianos/efeitos da radiação , Escherichia coli/química , Hidrogéis/química , Hidrogéis/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Metacrilatos/farmacologia , Polímeros/química , Polímeros/farmacologia , Polímeros/efeitos da radiação , Pirróis/química , Pirróis/farmacologia , Pirróis/efeitos da radiação , Energia Solar , Staphylococcus aureus/efeitos dos fármacos , Luz Solar , Purificação da Água/métodos
8.
Macromol Biosci ; 17(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27748556

RESUMO

This article reports the behavior of embryonic neural stem cells on a hydrogel that combines cationic, non-specific cell adhesion motifs with glycine-arginine-glycine-aspartic acid-serine-phenylalanine (GRGDSF)-peptides as specific cell adhesion moieties. Therefore, three hydrogels are prepared by free radical polymerization that contains either a GRGDSF-peptide residue (P1), amino ethylmethacrylate as a cationic residue (P2), or a combination of both motifs (P3). For each gel, cross linker concentrations of 8 mol% is used to have a comparable gel stiffness of 8-9 kPa. The cell experiments indicate a synergistic effect of the non-specific, cationic residues, and the specific GRGDSF-peptides on embryonic neural stem cell behavior that is especially pronounced in the cell adhesion experiments by more than doubling the number of cells after 72 h when comparing P3 with P2 and is less pronounced in the proliferation and differentiation experiments.


Assuntos
Motivos de Aminoácidos/genética , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Neurais/citologia , Peptídeos/química , Animais , Cátions/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Metilmetacrilatos/farmacologia , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Peptídeos/genética , Peptídeos/farmacologia
9.
J Colloid Interface Sci ; 473: 162-71, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27064742

RESUMO

Polarized attenuated total reflection (ATR-IR) spectroscopy and fluorescence microscopy techniques were used to characterize a 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) membrane supported on porous, cationic hydrogel beads. Fluorescence microscopy images showed that the DPhPC coated the external surface of the hydrogel scaffold. In addition, a fluorescence assay of the emission intensity of the Tb(3+)/dipicolinic acid complex demonstrated that the DPhPC coating acted as a barrier to Tb(3+) efflux from the scaffolded vesicle and successfully sealed the porous hydrogel bead. Fluorescence quenching and ATR-IR spectroscopic measurements revealed that the lipid coating has a bilayer structure. The phytanoyl chains were found to exhibit significant trans-gauche isomerization, characteristic of the fluid liquid phase. However, no lipid lateral mobility was observed by fluorescence recovery after photobleaching (FRAP) measurements. The phosphocholine headgroup was found to be well hydrated and oriented such that the cationic choline group tucked in behind the anionic phosphate group, consistent with an electrostatic attraction between the cationic scaffold and zwitterionic lipid. The absence of lipid lateral mobility may be due to the strength of this attraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA