Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 295(46): 15677-15691, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32900851

RESUMO

Progress in the study of circulating, cell-free nuclear DNA (ccf-nDNA) in cancer detection has led to the development of noninvasive clinical diagnostic tests and has accelerated the evaluation of ccf-nDNA abundance as a disease biomarker. Likewise, circulating, cell-free mitochondrial DNA (ccf-mtDNA) is under similar investigation. However, optimal ccf-mtDNA isolation parameters have not been established, and inconsistent protocols for ccf-nDNA collection, storage, and analysis have hindered its clinical utility. Until now, no studies have established a method for high-throughput isolation that considers both ccf-nDNA and ccf-mtDNA. We initially optimized human plasma digestion and extraction conditions for maximal recovery of these DNAs using a magnetic bead-based isolation method. However, when we incorporated this method onto a high-throughput platform, initial experiments found that DNA isolated from identical human plasma samples displayed plate edge effects resulting in low ccf-mtDNA reproducibility, whereas ccf-nDNA was less affected. Therefore, we developed a detailed protocol optimized for both ccf-mtDNA and ccf-nDNA recovery that uses a magnetic bead-based isolation process on an automated 96-well platform. Overall, we calculate an improved efficiency of recovery of ∼95-fold for ccf-mtDNA and 20-fold for ccf-nDNA when compared with the initial procedure. Digestion conditions, liquid-handling characteristics, and magnetic particle processor programming all contributed to increased recovery without detectable positional effects. To our knowledge, this is the first high-throughput approach optimized for ccf-mtDNA and ccf-nDNA recovery and serves as an important starting point for clinical studies.


Assuntos
Núcleo Celular/genética , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Ensaios de Triagem em Larga Escala/métodos , Mitocôndrias/genética , Automação , Ácidos Nucleicos Livres/isolamento & purificação , Ácidos Nucleicos Livres/metabolismo , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Endopeptidase K/metabolismo , Humanos , Magnetismo , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
2.
Brain ; 143(10): 3041-3051, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33029617

RESUMO

There is increasing evidence for a role of inflammation in Parkinson's disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the release of mitochondrial DNA (mtDNA), thereby triggering inflammation. Specifically, the CGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway mitigates activation of the innate immune system, quantifiable as increased interleukin-6 (IL6) levels. However, the role of IL6 and circulating cell-free mtDNA in unaffected and affected individuals harbouring mutations in PRKN/PINK1 and idiopathic Parkinson's disease patients remain elusive. We investigated IL6, C-reactive protein, and circulating cell-free mtDNA in serum of 245 participants in two cohorts from tertiary movement disorder centres. We performed a hypothesis-driven rank-based statistical approach adjusting for multiple testing. We detected (i) elevated IL6 levels in patients with biallelic PRKN/PINK1 mutations compared to healthy control subjects in a German cohort, supporting the concept of a role for inflammation in PRKN/PINK1-linked Parkinson's disease. In addition, the comparison of patients with biallelic and heterozygous mutations in PRKN/PINK1 suggests a gene dosage effect. The differences in IL6 levels were validated in a second independent Italian cohort; (ii) a correlation between IL6 levels and disease duration in carriers of PRKN/PINK1 mutations, while no such association was observed for idiopathic Parkinson's disease patients. These results highlight the potential of IL6 as progression marker in Parkinson's disease due to PRKN/PINK1 mutations; (iii) increased circulating cell-free mtDNA serum levels in both patients with biallelic or with heterozygous PRKN/PINK1 mutations compared to idiopathic Parkinson's disease, which is in line with previous findings in murine models. By contrast, circulating cell-free mtDNA concentrations in unaffected heterozygous carriers of PRKN/PINK1 mutations were comparable to control levels; and (iv) that circulating cell-free mtDNA levels have good predictive potential to discriminate between idiopathic Parkinson's disease and Parkinson's disease linked to heterozygous PRKN/PINK1 mutations, providing functional evidence for a role of heterozygous mutations in PRKN or PINK1 as Parkinson's disease risk factor. Taken together, our study further implicates inflammation due to impaired mitophagy and subsequent mtDNA release in the pathogenesis of PRKN/PINK1-linked Parkinson's disease. In individuals carrying mutations in PRKN/PINK1, IL6 and circulating cell-free mtDNA levels may serve as markers of Parkinson's disease state and progression, respectively. Finally, our study suggests that targeting the immune system with anti-inflammatory medication holds the potential to influence the disease course of Parkinson's disease, at least in this subset of patients.


Assuntos
DNA Mitocondrial/sangue , Interleucina-6/sangue , Transtornos Parkinsonianos/sangue , Transtornos Parkinsonianos/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Inflamação/sangue , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
3.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361078

RESUMO

Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders. Far more recently, mitochondria attracted renewed attention from the scientific community for their ability of intercellular translocation that can involve whole mitochondria, mitochondrial genome or other mitochondrial components. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy. In this review, we will provide an overview of the state of the art of the up-to-date knowledge on intercellular trafficking of mitochondria by discussing its biological relevance, mode and mechanisms underlying the process and its involvement in different pathophysiological contexts, highlighting its therapeutic potential for diseases with mitochondrial dysfunction primarily involved in their pathogenesis.


Assuntos
Doenças Metabólicas/fisiopatologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Humanos , Doenças Metabólicas/terapia , Neoplasias/terapia
4.
J Neurol ; 269(9): 4985-4996, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35486214

RESUMO

BACKGROUND: There is increasing evidence for the role of inflammation in the pathogenesis of mitochondrial diseases (MDs). However, the mechanisms underlying mutation-induced inflammation in MD remain elusive. Our previous study suggested that mitophagy is impaired in the skeletal muscle of those with MD, likely causing mitochondrial DNA (mtDNA) release and thereby triggering inflammation. We here aimed to decipher the role of the cGAS-STING pathway in inflammatory process in MDs. METHODS: We investigated the levels of circulating cell-free mtDNA (ccf-mtDNA) in the serum of 104 patients with MDs. Immunofluorescence was performed in skeletal muscles in MDs and control. Biochemical analysis of muscle biopsies was conducted with western blot to detect cGAS, STING, TBK1, IRF3 and phosphorylated IRF3 (p-IRF3). RT-qPCR was performed to detect the downstream genes of type I interferon in skeletal muscles. Furthermore, a protein microarray was used to examine the cytokine levels in the serum of patients with MDs. RESULTS: We found that ccf-mtDNA levels were significantly increased in those with MDs compared to the controls. Consistently, the immunofluorescent results showed that cytosolic dsDNA levels were increased in the muscle samples of MD patients. Biochemical analysis of muscle biopsies showed that cGAS, IRF3, and TBK1 protein levels were significantly increased in those with MDs, indicating that there was activation of the cGAS-STING pathway. RT-qPCR showed that downstream genes of type I interferon were upregulated in muscle samples of MDs. Protein microarray results showed that a total of six cytokines associated with the cGAS-STING pathway were significantly increased in MD patients (fold change > 1.2, p value < 0.05). CONCLUSIONS: These findings suggest that increases in ccf-mtDNA levels is associated with the activation of the cGAS-STING pathway, thereby triggering inflammation in MDs.


Assuntos
Interferon Tipo I , Doenças Mitocondriais , Citocinas/metabolismo , DNA Mitocondrial , Humanos , Inflamação , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia
5.
Gene ; 836: 146681, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728769

RESUMO

Mitochondria dynamics have a pivotal role in many aspects of immune function. Viral infections affect mitochondrial dynamics and trigger the release of mitochondrial DNA (mtDNA) in host cells. Released mtDNA guides the immune response towards an inflammatory response against pathogens. In addition, circulating cell-free mtDNA (ccf-mtDNA) is considered an invaluable indicator for the prognosis and severity of infectious diseases. This study provides an overview of the role of mtDNA in the dynamics of the immune response to COVID-19. We focused on the possible roles of mtDNA in inducing the signaling pathways, and the inflammasome activation and regulation in SARS-CoV-2. Targeting mtDNA-related pathways can provide critical insights into therapeutic strategies for COVID-19.


Assuntos
COVID-19 , DNA Mitocondrial , COVID-19/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Imunidade , Mitocôndrias/genética , Mitocôndrias/metabolismo , SARS-CoV-2
6.
J Psychiatr Res ; 123: 187-193, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078836

RESUMO

BACKGROUND: Mitochondrial dysfunction has been implicated in the pathophysiology of bipolar disorder (BD). Impediment of mitochondrial oxidative phosphorylation results in a shift toward anaerobic respiration and lactate production. Elevated CNS lactate levels in adults with BD inform the need to evaluate lactate in peripheral samples and early in the course of BD. Furthermore, there exists a recent surge of investigations looking at circulating cell-free mitochondrial DNA (ccf-mtDNA) as a potential biomarker as they are released from cells under physiological stress, apoptosis, or bioenergetic compromise. OBJECTIVES: To compare lactate and ccf-mtDNA, two different ways in assessing the mitochondrial health and function, in adolescents with BD versus healthy control adolescents (HC). METHODS: One-hundred and five adolescents (n = 64 BD, n = 41 HC) were included. Serum lactate level was measured using a commercially available colorimetric kit. Serum ccf-mtDNA concentration was measured using quantitative polymerase chain reaction from ccfDNA purified by commercially available spin columns. Diagnosis and mood symptoms were evaluated using semi-structured interviews. RESULTS: There is an increase in serum lactate level of adolescents with BD (1.319 ± 0.444 nmol/uL) versus HC (1.168 ± 0.353 nmol/uL; p = 0.043), but not ccf-mtDNA. Among BD adolescents, depression symptoms were negatively correlated with ccf-mtDNA levels (ρ = -0.289; p = 0.038) but loses significance when corrected for multiple comparison. Lactate was positively correlated with ccf-mtDNA in the overall sample (ρ = 0.201; p = 0.043). When examined by diagnosis, this association remained in BD (ρ = 0.273; p = 0.032), but not HC. CONCLUSION: These preliminary results indicate that elevated lactate is observed even among adolescents early in their course of BD, that the association between lactate and ccf-mtDNA appears to be specific to BD, and that ccf-mtDNA is potentially associated with depression symptoms in adolescent BD. In addition, the effect of psychotropic medications used in the treatment of BD on peripheral lactate and ccf-mtDNA requires further investigation.


Assuntos
Transtorno Bipolar , Adolescente , Adulto , Biomarcadores , DNA Mitocondrial/genética , Humanos , Mitocôndrias
7.
Psychoneuroendocrinology ; 107: 82-92, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112904

RESUMO

OBJECTIVE: We have previously found that acute psychological stress may affect mitochondria and trigger an increase in serum mitochondrial DNA, known as circulating cell-free mtDNA (ccf-mtDNA). Similar to other stress reactivity measures, there are substantial unexplained inter-individual differences in the magnitude of ccf-mtDNA reactivity, as well as within-person differences across different occasions of testing. Here, we sought to identify psychological and physiological predictors of ccf-mtDNA reactivity using machine learning-based multivariate classifiers. METHOD: We used data from serum ccf-mtDNA concentration measured pre- and post-stress in 46 healthy midlife adults tested on two separate occasions. To identify variables predicting the magnitude of ccf-mtDNA reactivity, two multivariate classification models, partial least-squares discriminant analysis (PLS-DA) and random forest (RF), were trained to discriminate between high and low ccf-mtDNA responders. Potential predictors used in the models included state variables such as physiological measures and affective states, and trait variables such as sex and personality measures. Variables identified across both models were considered to be predictors of ccf-mtDNA reactivity and selected for downstream analyses. RESULTS: Identified predictors were significantly enriched for state over trait measures (X2 = 7.03; p = 0.008) and for physiological over psychological measures (X2 = 4.36; p = 0.04). High responders were more likely to be male (X2 = 26.95; p < 0.001) and differed from low-responders on baseline cardiovascular and autonomic measures, and on stress-induced reduction in fatigue (Cohen's d = 0.38-0.73). These group-level findings also accurately accounted for within-person differences in 90% of cases. CONCLUSION: These results suggest that acute cardiovascular and psychological indices, rather than stable individual traits, predict stress-induced ccf-mtDNA reactivity. This work provides a proof-of-concept that machine learning approaches can be used to explore determinants of inter-individual and within-person differences in stress psychophysiology.


Assuntos
Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , Estresse Psicológico/genética , Adulto , Sistema Cardiovascular/metabolismo , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , DNA Mitocondrial/metabolismo , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estudo de Prova de Conceito , Estresse Psicológico/metabolismo
8.
Cells ; 8(4)2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965677

RESUMO

Mitochondrial dysfunction has been implicated in the pathogenesis of insulin resistance and type 2 diabetes. Damaged mitochondria DNA (mtDNA) may have a role in regulating hyperglycemia during type 2 diabetes. Circulating cell-free mitochondria DNA (ccf-mtDNA) was found in serum and plasma from patients and has been linked to the prognosis factors in various human diseases. However, the role of ccf-mtDNA in chronic inflammation in type 2 diabetes is unclear. In this study, we hypothesized that the ccf-mtDNA levels are associated with chronic inflammation in patients with type 2 diabetes. The mtDNA levels were elevated in the plasma from patients with type 2 diabetes compared to healthy subjects. The elevated mtDNA levels were associated with interleukin-1 (IL-1)ß levels in patients with type 2 diabetes. The mtDNA, from patients with type 2 diabetes, induced absent in melanoma 2 (AIM2) inflammasome-dependent caspase-1 activation and IL-1ß and IL-18 secretion in macrophages. Our results suggest that the ccf-mtDNA might contribute to AIM2 inflammasome-mediated chronic inflammation in type 2 diabetes.


Assuntos
DNA Mitocondrial/sangue , Proteínas de Ligação a DNA/sangue , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Interleucina-18/sangue , Interleucina-1beta/sangue , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA