Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834594

RESUMO

Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue. This collagen sponge has a morphology and porosity comparable to that of a native human LN. To demonstrate the suitability of the obtained chip for pharmacological applications, we used it to evaluate the effect of contrast agent/drug carrier size, on the penetration and accumulation of particles in 3D spheroids modeling secondary tumor. For this, the 0.3, 0.5 and 4 µm bovine serum albumin (BSA)/tannic acid (TA) capsules were mixed with lymphocytes and pumped through the developed chip. The capsule penetration was examined by scanning with fluorescence microscopy followed by quantitative image analysis. The results show that capsules with a size of 0.3 µm passed more easily to the tumor spheroid and penetrated inside. We hope that the device will represent a reliable alternative to in vivo early secondary tumor models and decrease the amount of in vivo experiments in the frame of preclinical study.


Assuntos
Neoplasias , Linfócitos T , Humanos , Cápsulas , Esferoides Celulares , Colágeno , Linfonodos
2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446149

RESUMO

Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.


Assuntos
Traumatismos da Medula Espinal , Ratos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Nervos Periféricos , Células-Tronco , Medula Espinal
3.
Biosci Biotechnol Biochem ; 86(10): 1417-1422, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35973688

RESUMO

HHUA endometrial adenocarcinoma cells aggregated into spheroids when cultured on collagen type I gels. 12-O-Tetradecanoylphorbol 13-acetate, a PKC activator, disassembled the spheroids through epithelial-mesenchymal transition and increased their proliferation rate, while inducing cell death under monolayer culture conditions. These unusual behaviors of endometrial epithelial cells with collagen fibers could be a target for the treatment of some endometrial diseases.


Assuntos
Transição Epitelial-Mesenquimal , Doenças Uterinas , Acetatos/metabolismo , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Feminino , Géis/metabolismo , Humanos , Acetato de Tetradecanoilforbol/farmacologia
4.
Biotechnol Bioeng ; 118(2): 542-554, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33146407

RESUMO

Spheroid culture provides cells with a three-dimensional environment that can better mimic physiological conditions compared to monolayer culture. Technologies involved in the generation of cell spheroids are continuously being innovated to produce spheroids with enhanced properties. In this paper, we review the manufacturing capabilities of current cell spheroid generation technologies. We propose that spheroid generation technologies should enable tight and robust process controls to produce spheroids of consistent and repeatable quality. Future technology development for the generation of cell spheroids should look into improvement in process control, standardization, scalability and monitoring, in addition to advanced methods of spheroid transfer and characterization.


Assuntos
Técnicas de Cultura de Células , Esferoides Celulares/metabolismo , Animais , Humanos , Esferoides Celulares/citologia
5.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773888

RESUMO

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Células-Tronco Mesenquimais/química , Esferoides Celulares/transplante , Engenharia Celular/tendências , Movimento Celular/efeitos dos fármacos , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Nanomedicina/tendências , Esferoides Celulares/química , Tropismo Viral/efeitos dos fármacos
6.
Cell Tissue Res ; 374(3): 541-553, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30136155

RESUMO

Bone marrow-derived mesenchymal stem/stromal cells (BMSC) may facilitate bone repair through secretion of factors that stimulate endogenous repair processes or through direct contribution to new bone through differentiation into osteoblast-like cells. BMSC microtissue culture and differentiation has been widely explored recently, with high-throughput platforms making large-scale manufacture of microtissues increasingly feasible. Bone-like BMSC microtissues could offer an elegant method to enhance bone repair, especially in small-volume non-union defects, where small diameter microtissues could be delivered orthoscopically. Using a high-throughput microwell platform, our data demonstrate that (1) BMSC in 3D microtissue culture result in tissue compaction, rather than growth, (2) not all mineralised bone-like matrix is incorporated in the bulk microtissue mass and (3) a significant amount of lipid vacuole formation is observed in BMSC microtissues exposed to BMP-2. These factors should be considered when optimising BMSC osteogenesis in microtissues or developing BMSC microtissue-based therapeutic delivery processes.


Assuntos
Adipogenia/efeitos dos fármacos , Proteína Morfogenética Óssea 2/farmacologia , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Engenharia Tecidual , Cálcio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Biotechnol Bioeng ; 114(4): 903-914, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27775170

RESUMO

The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Papila Dentária/citologia , Tecido Nervoso/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Adolescente , Diferenciação Celular , Criança , Humanos , Dente Molar/citologia , Esferoides Celulares/citologia
8.
Biotechnol Bioeng ; 112(7): 1457-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25678107

RESUMO

Three-dimensional (3D) culture models are widely used in basic and translational research. In this study, to generate and culture multiple 3D cell spheroids, we exploited laser ablation and replica molding for the fabrication of polydimethylsiloxane (PDMS) multi-well chips, which were validated using articular chondrocytes (ACs). Multi-well ACs spheroids were comparable or superior to standard spheroids, as revealed by glycosaminoglycan and type-II collagen deposition. Moreover, the use of our multi-well chips significantly reduced the operation time for cell seeding and medium refresh. Exploiting a similar approach, we used clinical-grade fibrin to generate implantable multi-well constructs allowing for the precise distribution of multiple cell types. Multi-well fibrin constructs were seeded with ACs generating high cell density regions, as shown by histology and cell fluorescent staining. Multi-well constructs were compared to standard constructs with homogeneously distributed ACs. After 7 days in vitro, expression of SOX9, ACAN, COL2A1, and COMP was increased in both constructs, with multi-well constructs expressing significantly higher levels of chondrogenic genes than standard constructs. After 5 weeks in vivo, we found that despite a dramatic size reduction, the cell distribution pattern was maintained and glycosaminoglycan content per wet weight was significantly increased respect to pre-implantation samples. In conclusion, multi-well chips for the generation and culture of multiple cell spheroids can be fabricated by low-cost rapid prototyping techniques. Furthermore, these techniques can be used to generate implantable constructs with defined architecture and controlled cell distribution, allowing for in vitro and in vivo investigation of cell interactions in a 3D environment.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Condrócitos/fisiologia , Contagem de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Fatores de Tempo
9.
Toxicology ; 508: 153931, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222830

RESUMO

Metastasis contributes to the increased mortality rate of cancer, but the intricate mechanisms remain unclear. Cancer cells from a primary tumor invade nearby tissues and access the lymphatic or circulatory system. If these cells manage to survive and extravasate from the vasculature into distant tissues and ultimately adapt to survive, they will proliferate and facilitate malignant tumor formation. Traditional two-dimensional (2D) cell cultures offer a rapid and convenient method for validating the efficacy of anticancer drugs within a reasonable cost range, but their utility is limited because of tumors' high heterogeneity in vivo and spatial complexities. Three-dimensional (3D) cell cultures that mimic the physiological conditions of cancer cells in vivo have gained considerable interest. In these cultures, cells assemble into spheroids through gravity, magnetic forces, or their low-adhesion to the plates. Although these approaches address some of the limitations of 2D cultures, they often require a considerable amount of time and cost. Therefore, this study aims to enhance the effectiveness of 3D culture techniques by using microfluidic systems to provide a high-throughput and sensitive pipeline for drug screening. Using these systems, we studied the effects of lanthanide elements, which have garnered interest in cancer treatment, on spheroid formation and cell spreading. Our findings suggest that these elements alter the compactness of cell spheroids and decrease cell mobility.

10.
Micromachines (Basel) ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930659

RESUMO

Three-dimensional cell culture spheroids are commonly used for drug evaluation studies because they can produce large quantities of homogeneous cell aggregates. As the spheroids grow, nutrients supplied from outer spheroid regions render the inner spheroid areas hypoxic and hyponutrient, which makes them unobservable through confocal microscopy. In this study, we fabricated a cancer cell aggregate culture device that facilitates the observation of nutrient and oxygen gradients. An alginate gel fiber was created in the cell culture chamber to ensure a flow path for supplying the culture medium. A gradient of nutrients and oxygen was generated by positioning the flow channel close to the edge of the chamber. We devised a fabrication method that uses calcium carbonate as a source of Ca2+ for the gelation of sodium alginate, which has a slow reaction rate. We then cultured a spheroid of HCT116 cells, which were derived from human colorectal carcinoma using a fluorescent ubiquitination-based cell cycle indicator. Fluorescence observation suggested the formation of a hypoxic and hyponutrient region within an area approximately 500 µm away from the alginate gel fiber. This indicates the development of a cancer cell aggregate culture device that enables the observation of different nutrition and oxygen states.

11.
Bioeng Transl Med ; 9(2): e10635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435829

RESUMO

The prognosis for postinjury peripheral nerve regeneration remains suboptimal. Although transplantation of exogenous Schwann cells (SCs) has been considered a promising treatment to promote nerve repair, this strategy has been hampered in practice by the limited availability of SC sources and an insufficient postengraftment cell retention rate. In this study, to address these challenges, SCs were aggregated into spheroids before being delivered to an injured rat sciatic nerve. We found that the three-dimensional aggregation of SCs induced their acquisition of a repair phenotype, as indicated by enhanced levels of c-Jun expression/activation and decreased expression of myelin sheath protein. Furthermore, our in vitro results demonstrated the superior potential of the SC spheroid-derived secretome in promoting neurite outgrowth of dorsal root ganglion neurons, enhancing the proliferation and migration of endogenous SCs, and recruiting macrophages. Moreover, transplantation of SC spheroids into rats after sciatic nerve transection effectively increased the postinjury nerve structure restoration and motor functional recovery rates, demonstrating the therapeutic potential of SC spheroids. In summary, transplantation of preassembled SC spheroids may hold great potential for enhancing the cell delivery efficiency and the resultant therapeutic outcome, thereby improving SC-based transplantation approaches for promoting peripheral nerve regeneration.

12.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823920

RESUMO

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Assuntos
Resinas Acrílicas , Hidrogéis , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efeitos dos fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Células HeLa , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Metacrilatos/química , Técnicas de Cocultura , Neoplasias/patologia
13.
ACS Appl Mater Interfaces ; 16(34): 44575-44589, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39160767

RESUMO

To control three-dimensional (3D) cell spheroid formation, it is well-known the surface physicochemical and mechanical properties of cell culture materials are important; however, the formation and function of 3D cells are still unclear. This study demonstrated the precise control of the formation of 3D cells and 3D cell functions using diblock copolymers containing different ratios of a zwitterionic trimethylamine N-oxide group. The diblock copolymers were composed of poly(n-butyl methacrylate) (PBMA) as the hydrophobic unit for surface coating on a cell culture dish and stabilization in water, and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) as the precursor of N-oxide. The zwitterionic N-oxide converted from 0 to 100% using PDMAEMA. The wettability and surface zeta potential varied with different ratios of N-oxide diblock copolymer-coated surfaces, and the amount of protein adsorbed in the cell culture medium decreased monotonically with increasing N-oxide ratio. 3D cell spheroid formations were observed by seeding human umbilical cord mesenchymal stem cells (hUC-MSCs) in diblock copolymer-coated flat-bottom well plates, and the N-oxide ratio was over 40%. The cells proliferated in two-dimensions (2D) and did not form spheroids when the N-oxide ratio was less than 20%. Interestingly, the expression of undifferentiated markers of hUC-MSCs was higher on surfaces that adsorbed proteins to some extent and formed 50-150 µm spheroids in the range of 40-70% of N-oxide ratio. We revealed that a moderately protein-adsorbed surface allows precise control of spheroid formation and undifferentiated 3D cells and has potential applications for high-quality spheroids in regenerative medicine and drug screening.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Polímeros/química , Propriedades de Superfície , Nylons/química , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Óxidos/química , Proliferação de Células/efeitos dos fármacos
14.
Methods Mol Biol ; 2783: 235-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478237

RESUMO

Advances in technology and automation over the past several decades have made it feasible to perform high-throughput compound screening with cell spheroids, a valuable approach for drug discovery. It is entirely feasible to generate multiple 384-well plates containing adipose spheroids from cryopreserved, single-donor, adipose stem cells, thus incorporating genetic diversity into the discovery stages of research. In this protocol, we describe our method for isolating primary human adipose stem cells and synthesizing cell spheroids comprised of mature adipocytes and stromal cells. Also included are representative outcome measurements useful for characterizing adipocyte metabolism and health. Wherever possible, we describe technologies that can be used to automate characterization and increase throughput.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Esferoides Celulares , Células Estromais , Obesidade/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular
15.
ACS Appl Mater Interfaces ; 15(22): 26373-26384, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219569

RESUMO

Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Esferoides Celulares , Camundongos , Animais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Engenharia Tecidual/métodos , Dexametasona/farmacologia , Dexametasona/metabolismo
16.
ACS Appl Bio Mater ; 6(11): 4682-4693, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37867293

RESUMO

The three-dimensional (3D) spheroid cell culture model is crucial in screening anticancer drugs in vitro and understanding tumor cell behavior. However, the current in vitro models require highly skilled techniques. Here, we present an in vitro, tumor-mimetic, self-detachable, cancer cell spheroid model that provides the confined space of a tumor microenvironment, convenient spheroid retrieval, immunostaining, treatment, and imaging. We formed a void space within alginate macrobeads by ionic disintegration at a specific region inside. The macrobeads were further destabilized with bovine serum albumin to retrieve the spheroid cultured within the void space. Quantitative analysis of the immunofluorescence images of the cultured spheroids showed enhanced expressions of the hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase-9 (CA-9), like monolayer cultures of cancer cells under hypoxic conditions (0.2% oxygen). Furthermore, adding CoCl2 to the cell culture media induces even higher amounts of HIF-1α and CA-9 in the cultured spheroids. In conclusion, the present work highlighted the in vitro spheroid model, which is closer to the tumor microenvironment and has user-friendly cell seeding, spheroid retrieval, and immunostaining steps.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares , Hidrogéis , Antineoplásicos/farmacologia , Microambiente Tumoral
17.
Macromol Biosci ; 23(5): e2200486, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880189

RESUMO

3D structured cells have great drug screening potential because they mimic in vivo tissues better than 2D cultured cells. In this study, multi-block copolymers composed of poly(2-methoxyethyl acrylate) (PMEA) and polyethylene glycol (PEG) are developed as a new kind of biocompatible polymers. PEG imparts non-cell adhesion while PMEA acts as an anchoring segment to prepare the polymer coating surface. The multi-block copolymers show higher stability in water than PMEA. A specific micro-sized swelling structure composed of a PEG chain is observed in the multi-block copolymer film in water. A single NIH3T3-3-4 spheroid is formed in 3 h on the surface of the multi-block copolymers with 8.4 wt% PEG. However, at a PEG content of 0.7 wt%, spheroid formed after 4 days. The adenosine triphosphate (ATP) activity of cells and the internal necrotic state of the spheroid change depending on PEG loading in the multi-block copolymers. As the formation rate of cell spheroid on low-PEG-ratio multi-block copolymers is slow, internal necrosis of cell spheroid is less likely to occur. Consequently, the cell spheroid formation rate by changing the PEG chain content in multi-block copolymers is successfully controlled. These unique surfaces are suggested to be useful for 3D cell culture.


Assuntos
Materiais Biocompatíveis , Polietilenoglicóis , Animais , Camundongos , Polietilenoglicóis/química , Células NIH 3T3 , Materiais Biocompatíveis/química , Polímeros/química , Água
18.
Biomater Res ; 27(1): 51, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208764

RESUMO

BACKGROUND: Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods. METHODS: In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids. RESULTS: The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method. CONCLUSION: Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.

19.
Tissue Eng Regen Med ; 20(1): 127-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592326

RESUMO

BACKGROUND: Islet transplantation is currently considered the most promising method for treating insulin-dependent diabetes. The two most-studied artificial islets are alginate-encapsulated ß cells or ß cell spheroids. As three-dimensional (3D) models, both artificial islets have better insulin secretory functions and transplantation efficiencies than cells in two-dimensional (2D) monolayer culture. However, the effects of these two methods have not been compared yet. Therefore, in this study, cells from the mouse islet ß cell line Min6 were constructed as scaffold-free spheroids or alginate-encapsulated dispersed cells. METHODS: MIN6 cell spheroids were prepared by using Agarose-base microwell arrays. The insulin secretion level was determined by mouse insulin ELISA kit, and the gene and protein expression status of the MIN6 were performed by Quantitative polymerase chain reaction and immunoblot, respectively. RESULTS: Both 3D cultures effectively promoted the proliferation and glucose-stimulated insulin release (GSIS) of MIN6 cells compared to 2D adherent cells. Furthermore, 1% alginate-encapsulated MIN6 cells demonstrated more significant effects than the spheroids. In general, three pancreatic genes were expressed at higher levels in response to the 3D culture than to the 2D culture, and pancreatic/duodenal homeobox-1 (PDX1) expression was higher in the cells encapsulated in 1% alginate than that in the spheroids. A western blot analysis showed that 1% alginate-encapsulated MIN6 cells activated the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/forkhead transcription factor FKHR (FoxO1) pathway more than the spheroids, 0.5% alginate-, or 2% alginate-encapsulated cells did. The 3D MIN6 culture, therefore, showed improved effects compared to the 2D culture, and the 1% alginate-encapsulated MIN6 cells exhibited better effects than the spheroids. The upregulation of PDX1 expression through the activation of the PI3K/AKT/FoxO1 pathway may mediate the improved cell proliferation and GSIS in 1% alginate-encapsulated MIN6 cells. CONCLUSION: This study may contribute to the construction of in vitro culture systems for pancreatic islets to meet clinical requirements.


Assuntos
Ilhotas Pancreáticas , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Alginatos/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
Biofabrication ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630715

RESUMO

In this research, we introduced a novel strategy for fabricating cell sheets (CSs) prepared by simply adding a fibrinogen solution to growth medium without using any synthetic polymers or chemical agents. We confirmed that the fibrinogen-based CS could be modified for target tissue regardless of size, shape, and cell types. Also, fibrinogen-based CSs were versatile and could be used to form three-dimensional (3D) CSs such as multi-layered CSs and those mimicking native blood vessels. We also prepared fibrinogen-based spheroid sheets for the treatment of ischemic disease. The fibrinogen-based spheroid sheets had much higherin vitrotubule formation and released more angiogenic factors compared to other types of platform in this research. We transplanted fibrinogen-based spheroid sheets into a mouse hindlimb ischemia model and found that fibrinogen-based spheroid sheets showed significantly improved physiological function and blood perfusion rates compared to the other types of platform in this research.


Assuntos
Fibrinogênio , Membro Posterior , Isquemia , Animais , Camundongos , Fibrinogênio/administração & dosagem , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Isquemia/terapia , Isquemia/metabolismo , Neovascularização Fisiológica , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA