Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298066

RESUMO

The issue of identity authentication for online medical services has been one of the key focuses of the healthcare industry in recent years. Most healthcare organizations use centralized identity management systems (IDMs), which not only limit the interoperability of patient identities between institutions of healthcare, but also create isolation between data islands. The more important matter is that centralized IDMs may lead to privacy disclosure. Therefore, we propose Health-zkIDM, a decentralized identity authentication system based on zero-knowledge proof and blockchain technology, which allows patients to identify and verify their identities transparently and safely in different health fields and promotes the interaction between IDM providers and patients. The users in Health-zkIDM are uniquely identified by one ID registered. The zero-knowledge proof technology is deployed on the client, which provides the user with a proof of identity information and automatically verifies the user's identity after registration. We implemented chaincodes on the Fabric, including the upload of proof of identity information, identification, and verification functions. The experiences show that the performance of the Health-zkIDM system can achieve throughputs higher than 400 TPS in Caliper.


Assuntos
Blockchain , Humanos , Atenção à Saúde , Privacidade , Tecnologia
2.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161893

RESUMO

Internet of Things (IoT) technology is now widely used in energy, healthcare, services, transportation, and other fields. With the increase in industrial equipment (e.g., smart mobile terminals, sensors, and other embedded devices) in the Internet of Things and the advent of Industry 4.0, there has been an explosion of data generated that is characterized by a high volume but small size. How to manage and protect sensitive private data in data sharing has become an urgent issue for enterprises. Traditional data sharing and storage relies on trusted third-party platforms or distributed cloud storage, but these approaches run the risk of single-node failure, and third parties and cloud storage providers can be vulnerable to attacks that can lead to data theft. To solve these problems, this paper proposes a Hyperledger Fabric blockchain-based secure data transfer scheme for enterprises in the Industrial Internet of Things (IIOT). We store raw data in the IIoT in the InterPlanetary File System (IPFS) network after encryption and store the Keyword-index table we designed in Hyperledger Fabric blockchain, and enterprises share the data by querying the Keyword-index table. We use Fabric's channel mechanism combined with our designed Chaincode to achieve privacy protection and efficient data transmission while using the Elliptic Curve Digital Signature Algorithm (ECDSA) to ensure data integrity. Finally, we performed security analysis and experiments on the proposed scheme, and the results show that overall the data transfer performance in the IPFS network is generally better than the traditional network, In the case of transferring 5 MB file size data, the transmission speed and latency of IPFS are 19.23 mb/s and 0.26 s, respectively, and the IPFS network is almost 4 times faster than the TCP/IP network while taking only a quarter of the time, which is more advantageous when transferring small files, such as data in the IIOT. In addition, our scheme outperforms the blockchain systems mainly used today in terms of both throughput, latency, and system overhead. The average throughput of our solution can reach 110 tps (transactions are executed per second), and the minimum throughput in experimental tests can reach 101 tps.

3.
J Med Internet Res ; 23(1): e13556, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480851

RESUMO

BACKGROUND: Health care professionals are required to maintain accurate health records of patients. Furthermore, these records should be shared across different health care organizations for professionals to have a complete review of medical history and avoid missing important information. Nowadays, health care providers use electronic health records (EHRs) as a key to the implementation of these goals and delivery of quality care. However, there are technical and legal hurdles that prevent the adoption of these systems, such as concerns about performance and privacy issues. OBJECTIVE: This study aimed to build and evaluate an experimental blockchain for EHRs, named HealthChain, which overcomes the disadvantages of traditional EHR systems. METHODS: HealthChain is built based on consortium blockchain technology. Specifically, three organizations, namely hospitals, insurance providers, and governmental agencies, form a consortium that operates under a governance model, which enforces the business logic agreed by all participants. Every peer node hosts an instance of the distributed ledger consisting of EHRs and an instance of chaincode regulating the permissions of participants. Designated orderers establish consensus on the order of EHRs and then disseminate blocks to peers. RESULTS: HealthChain achieves functional and nonfunctional requirements. It can store EHRs in a distributed ledger and share them among different participants. Moreover, it demonstrates superior features, such as privacy preservation, security, and high throughput. These are the main reasons why HealthChain is proposed. CONCLUSIONS: Consortium blockchain technology can help to build new EHR systems and solve the problems that prevent the adoption of traditional systems.


Assuntos
Blockchain/normas , Atenção à Saúde/métodos , Registros Eletrônicos de Saúde/normas , Humanos
4.
IFIP Adv Inf Commun Technol ; 648: 360-376, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36544863

RESUMO

Hyperledger Fabric (HLF) is an open-source platform for deploying enterprise-level permissioned blockchains where users from multiple organizations can participate. Preventing unauthorized access to resources in such blockchains is of critical importance. Towards addressing this requirement, HLF supports different access control models. However, support for Attribute-Based Access Control (ABAC) in the current version of HLF is not comprehensive enough to address various requirements that arise when multiple organizations interact in an enterprise setting. To address those shortcomings, in this paper, we develop and present methods for providing full ABAC functionality in Hyperledger Fabric. Performance evaluation under different network configurations using the Hyperledger Caliper benchmarking tool shows that the proposed approach is quite efficient in practice.

5.
F1000Res ; 10: 901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858590

RESUMO

Introduction Unauthorized access to data is one of the most significant privacy issues that hinder most industries from adopting big data technologies. Even though specific processes and structures have been put in place to deal with access authorization and identity management for large databases nonetheless, the scalability criteria are far beyond the capabilities of traditional databases. Hence, most researchers are looking into other solutions, such as big data management. Methods In this paper, we firstly study the strengths and weaknesses of implementing cryptography and blockchain for identity management and authorization control in big data, focusing on the healthcare domain. Subsequently, we propose a decentralized data access and sharing system that preserves privacy to ensure adequate data access management under the blockchain. In addition, we designed a blockchain framework to resolve the decentralized data access and sharing system privacy issues, by implementing a public key infrastructure model, which utilizes a signature cryptography algorithm (elliptic curve and signcryption). Lastly, we compared the proposed blockchain model to previous techniques to see how well it performed. Results We evaluated the blockchain on four performance metrics which include throughput, latency, scalability, and security. The proposed blockchain model was tested using a sample of 5000 patients and 500,000 observations. The performance evaluation results further showed that the proposed model achieves higher throughput and lower latency compared to existing approaches when the workload varies up to 10,000 transactions. Discussion This research reviews the importance of blockchains as they provide infinite possibilities to individuals, companies, and governments.


Assuntos
Blockchain , Algoritmos , Atenção à Saúde , Instalações de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA