RESUMO
Blue quantum dot light-emitting devices (QLEDs) suffer from fast electroluminescence (EL) loss when under electrical bias. Here, it is identified that the fast EL loss in blue QLEDs is not due to a deterioration in the photoluminescence quantum yield of the quantum dots (QDs), contrary to what is commonly believed, but rather arises primarily from changes in charge injection overtime under the bias that leads to a deterioration in charge balance. Measurements on hole-only and electron-only devices show that hole injection into blue QDs increases over time whereas electron injection decreases. Results also show that the changes are associated with changes in hole and electron trap densities. The results are further verified using QLEDs with blue and red QDs combinations, capacitance versus voltage, and versus time characteristics of the blue QLEDs. The changes in charge injection are also observed to be partially reversible, and therefore using pulsed current instead of constant current bias for driving the blue QLEDs leads to an almost 2.5× longer lifetime at the same initial luminance. This work systematically investigates the origin of blue QLEDs EL loss and provides insights for designing improved blue QDs paving the way for QLEDs technology commercialization.
RESUMO
Efficient charge injection and radiative recombination are essential to achieving high-performance perovskite light-emitting diodes (Pero-LEDs). However, the perovskite emission layer (EML) and the electron transport layer (ETL) form a poor physically interfacial contact and non-negligible charge injection barrier, limiting the device performance. Herein, we utilize a phosphine oxide, 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), to treat the perovskite/ETL interface and form a chemically bonded contact. Specifically, PO-T2T firmly bonds on the perovskite's surface and grain boundaries through a dative bond, effectively passivating the uncoordinated lead defects. Additionally, PO-T2T has high electron mobility and establishes an electron transport highway to bridge the ETL and EML. As a result, a maximum external quantum efficiency (EQEmax) of 22.06% (average EQEmax of 20.02 ± 1.00%) and maximum luminance (Lmax) of 103286 cd m-2 have been achieved for the champion device. Our results indicate that EML/ETL interface modifications are crucial for the fabrication of highly efficient Pero-LEDs.
RESUMO
Molecular electronic devices offer a path to the miniaturization of electronic circuits and could potentially facilitate novel functionalities that can be embedded into the molecular structure. Given their nanoscale dimensions, device properties are strongly influenced by quantum effects, yet many of these phenomena have been largely overlooked. We investigated the mechanism responsible for current rectification in molecular diodes and found that efficient rectification is achieved by enhancing the Stark effect strength and enabling a large number of molecules to participate in transport. These findings provided insights into the operation of molecular rectifiers and guided the development of high-performance devices via the design of molecules containing polarizable aromatic rings. Our results are consistent for different molecular structures and are expected to have broad applicability to all molecular devices by answering key questions related to charge transport mechanisms in such systems.
RESUMO
Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing ("recording") of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 µm diameters and 10-23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 µs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 µC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential.
Assuntos
Carbono , Grafite , Animais , Ratos , Bandagens , Transporte Biológico , EletrodosRESUMO
Wide interest in quantum dot (QD) light-emitting diodes (QLEDs) for potential application to display devices and light sources has led to their rapid advancement in device performance. Despite such progress, detailed operation mechanisms of QLEDs, which are necessary for the fundamental understanding and further improvements, have been still uncertain because of the intricate interaction between charges and excitons in electrical operation. In this work, the transient electroluminescence (TREL) signals of dichromatic QLEDs which are purposely designed to consist of two different color-emitting QD layers are analyzed. As a result, not only can the charge injection and exciton recombination processes be visualized but the electron mobility of the QD layer can also be estimated. Furthermore, the effects of Förster resonant energy transfer between two QDs and exciton quenching near the QD layer are quantitatively measured in QLED operation. The authors believe that their results based on TREL analyses will contribute to the understanding and development of high-performance QLEDs.
RESUMO
The poor chemical miscibility between metal and organic materials usually leads to both structural and energetic mismatches at gold/organic interfaces, and thereby, high contact resistance of organic electronic devices. This study shows that the contact resistance of organic field-effect transistors is significantly reduced by one order of magnitude, by reforming the contact interface between gold electrodes and conjugated polymers upon a polymer insulator-assisted thermal annealing. Upon an optimized solution process, the conjugated polymer is homogenously distributed within the amorphous polymer insulator matrix with relatively low glass transition temperature, and thus, even a moderate annealing temperature can induce sufficient motion of conjugated polymer chains to simultaneously adjust the polymer orientation and improve the packing of gold atoms. Consequently, gold/conjugated polymer contact is reorganized after annealing, which improves both charge transport from bulk gold to interface and charge injection from gold into conjugated polymers. This method, with appropriate insulator matrix, is effective for improving the injection of both holes and electrons, and widely applicable for many unipolar and ambipolar conjugated polymers to optimize the device performance and simultaneously increase the optical transparency (over 80%). A frequency doubler and a phase modulator are demonstrated, respectively, using the ambipolar transistors with optimized charge injection properties.
RESUMO
Charge injection at metal-organic interfaces often limits the electric current in organic light-emitting diodes without additional injection layers. Integrated nanopatterned electrodes may provide a way to overcome this current injection limit by local field enhancements leading to locally space charge-limited currents. We compare electrical characteristics of planar and nanopatterned hole-only devices based on the charge transport material NPB with different thicknesses in order to investigate the nanopattern's effect on the current limitation mechanism. Integration of a periodic nanograting into the metal electrode yields a current increase of about 1.5-4 times, depending on thickness and operating voltage. To verify the experimental results, we implement a finite element simulation model that solves the coupled Poisson and drift-diffusion equations in a weak form. It includes space charges, drift and diffusion currents, nonlinear mobility, and charge injection at the boundaries. We find in experiment and simulation that the planar devices exhibit injection-limited currents, whereas the currents in the nanopatterned devices are dominated by space charge effects, overcoming the planar injection limit. The simulations show space charge accumulations at the corners of the nanopattern, confirming the idea of locally space charge-limited currents.
RESUMO
Among many phase-changing materials, graphite is probably the most studied and interesting: the rhombohedral (3R) and hexagonal (2H) phases exhibit dramatically different electronic properties. However, up to now the only way to promote 3R to 2H phase transition is through exposure to elevated temperatures (above 1000 °C); thus, it is not feasible for modern technology. In this work, we demonstrate that 3R to 2H phase transition can be promoted by changing the charged state of 3D graphite, which promotes the repulsion between the layers and significantly reduces the energy barrier between the 3R and 2H phases. In particular, we show that charge transfer from lithium nitride (α-Li3N) to graphite can lower the transition temperature down to 350 °C. The proposed interlayer slipping model potentially offers the control over topological states at the interfaces between different phases, making this system even more attractive for future electronic applications.
RESUMO
Light sources on the scale of single molecules can be addressed and characterized at their proper sub-nanometer scale by scanning tunneling microscopy-induced luminescence (STML). Such a source can be driven by defined short charge pulses while the luminescence is detected with sub-nanosecond resolution. We introduce an approach to concurrently image the molecular emitter, which is based on an individual defect, with its local environment along with its luminescence dynamics at a resolution of a billion frames per second. The observed dynamics can be assigned to the single electron capture occurring in the low-nanosecond regime. While the emitter's location on the surface remains fixed, the scanning of the tip modifies the energy landscape for charge injection into the defect. The principle of measurement is extendable to fundamental processes beyond charge transfer, like exciton diffusion.
RESUMO
Charge injection is a basic transport process that strongly affects performance of optoelectronic devices such as light-emitting diodes and photodetectors. In these devices, the charge injection barrier is related to the band bending at the active layer/electrode interface and exhibits sophisticated dependence on interface structure and device operating conditions, making it difficult to determine via either theoretical prediction or experimental measurements. Here, in operando cross-sectional scanning Kelvin probe microscopy (SKPM) has been applied in organic photodetectors to visualize the interfacial band bending. The photoinduced interfacial band bending becomes more significant with increasing reverse bias voltage, resulting in reduced charge injection barrier and facilitated charge injection. The photoinduced injection current is orders of magnitude higher than the photocurrent directly generated from light absorption and thus leads to significant photomultiplication. Furthermore, the interfacial structure is tuned to further enhance photoinduced interfacial band bending and the photomultiplication factor.
RESUMO
Transition metal oxides (TMOs) have been under the spotlight as promising precatalysts for electrochemical oxygen evolution reaction (OER) in alkaline media. However, the slow and incomplete self-reconstruction from TMOs to (oxy)hydroxides as well as the formed (oxy)hydroxides with unmodified electronic structure gives rise to the inferior OER performance to the noble metal oxide ones. Herein, a unique dual metal oxides lattice coupling strategy is proposed to fabricate carbon cloth-supported ultrathin nanowires arrays, which are composed of pseudo-periodically welded NiO with CeO2 nanocrystals (NiO/CeO2 NW@CC). When served as an OER precatalyst in 1.0 m KOH, the NiO/CeO2 NW@CC shows an ultralow overpotential of 330 mV at 50 mA cm-2 , along with an impressive cycle durability of more than 3 days even at 50 mA cm-2 , surpassing CC-supported NiO and commercial IrO2 catalysts. The combined experimental and theoretical investigations unveil that the atomic coupling of CeO2 can not only appreciably trigger the generation of oxygen vacancies and expedite phase transformation of NiO into active NiOOH, but also in situ create a chemical bond with the formed NiOOH and enable the electron injection, thus effectively inhibiting the aggregation of the accessible NiOOH nanodomains and optimizing their reaction free energy towards oxygen-containing intermediates.
RESUMO
This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) directly integrated with an array of 12 × 80 piezoelectric transducer elements to enable next-generation ultrasound probes for 3D carotid artery imaging. The ASIC, implemented in a 0.18 µm high-voltage Bipolar-CMOS-DMOS (HV BCD) process, adopted a programmable switch matrix that allowed selected transducer elements in each row to be connected to a transmit and receive channel of an imaging system. This made the probe operate like an electronically translatable linear array, allowing large-aperture matrix arrays to be interfaced with a manageable number of system channels. This paper presents a second-generation ASIC that employed an improved switch design to minimize clock feedthrough and charge-injection effects of high-voltage metal-oxide-semiconductor field-effect transistors (HV MOSFETs), which in the first-generation ASIC caused parasitic transmissions and associated imaging artifacts. The proposed switch controller, implemented with cascaded non-overlapping clock generators, generated control signals with improved timing to mitigate the effects of these non-idealities. Both simulation results and electrical measurements showed a 20 dB reduction of the switching artifacts. In addition, an acoustic pulse-echo measurement successfully demonstrated a 20 dB reduction of imaging artifacts.
Assuntos
Artefatos , Artérias Carótidas/diagnóstico por imagem , Transdutores , Ultrassonografia , Desenho de Equipamento , Imageamento TridimensionalRESUMO
A bis(benzobuta)tetraazapentacene derivative was reduced to its radical anion and its dianion, using potassium [18]crown-6 anthracenide in THF. Both reduced species were characterized by UV/Vis spectroscopy of the isolated species and by spectroelectrochemistry. Two distinct single-crystal structures of the dianion and an EPR spectrum of the radical anion were obtained. Contrary to other azaacenes, the lowest energy absorption in the UV/Vis spectrum of the dianion is redshifted in comparison to that of the neutral compound.
RESUMO
Depending on their use, electrodes must have a certain size and design so as not to compromise their electrical characteristics. It is fundamental to be aware of all dependences on external factors that vary the electrochemical characteristics of the electrodes. When using implantable electrodes, the maximum charge injection capacity (CIC) is the total amount of charge that can be injected into the tissue in a reversible way. It is fundamental to know the relations between the characteristics of the microelectrode itself and its maximum CIC in order to develop microelectrodes that will be used in biomedical applications. CIC is a very complex measure that depends on many factors: material, size (geometric and effectiveness area), and shape of the implantable microelectrode and long-term behavior, composition, and temperature of the electrolyte. In this paper, our previously proposed measurement setup and automated calculation method are used to characterize a graphene microelectrode and to measure the behavior of a set of microelectrodes that have been developed in the Fraunhofer Institute for Biomedical Engineering (IBMT) labs. We provide an electrochemical evaluation of CIC for these microelectrodes by examining the role of the following variables: pulse width of the stimulation signal, electrode geometry and size, roughness factor, solution, and long-term behavior. We hope the results presented in this paper will be useful for future studies and for the manufacture of advanced implantable microelectrodes.
RESUMO
The design of safe stimulation protocols for functional electrostimulation requires knowledge of the "maximum reversible charge injection capacity" of the implantable microelectrodes. One of the main difficulties encountered in characterizing such microelectrodes is the calculation of the access voltage Va. This paper proposes a method to calculate Va that does not require prior knowledge of the overpotential terms and of the electrolyte (or excitable tissue) resistance, which is an advantage for in vivo electrochemical characterization of microelectrodes. To validate this method, we compare the calculated results with those obtained from conventional methods for characterizing three flexible platinum microelectrodes by cyclic voltammetry and voltage transient measurements. This paper presents the experimental setup, the required instrumentation, and the signal processing.
Assuntos
Eletrodos Implantados , Microeletrodos , HumanosRESUMO
Excitation of localized surface plasmons in metal nanostructures generates hot electrons that can be transferred to an adjacent semiconductor, greatly enhancing the potential light-harvesting capabilities of photovoltaic and photocatalytic devices. Typically, the external quantum efficiency of these hot-electron devices is too low for practical applications (<1%), and the physics underlying this low yield remains unclear. Here, we use transient absorption spectroscopy to quantify the efficiency of the initial electron transfer in model systems composed of gold nanoparticles (NPs) fully embedded in TiO2 or Al2O3 films. In independent experiments, we measure free carrier absorption and electron-phonon decay in the model systems and determine that the electron-injection efficiency from the Au NPs to the TiO2 ranges from about 25% to 45%. While much higher than some previous estimates, the measured injection efficiency is within an upper-bound estimate based on a simple approximation for the Au hot-electron energy distribution. These results have important implications for understanding the achievable injection efficiencies of hot-electron plasmonic devices and show that the injection efficiency can be high for Au NPs fully embedded within a semiconductor with dimensions less than the Au electron mean free path.
RESUMO
The negative capacitance (NC) effects in ferroelectric materials have emerged as the possible solution to low-power transistor devices and high-charge-density capacitors. Although the steep switching characteristic (subthreshold swing < sub-60 mV/dec) has been demonstrated in various devices combining the conventional transistors with ferroelectric gates, the actual applications of the NC effects are still some way off owing to the inherent hysteresis problem. This work reinterpreted the hysteretic properties of the NC effects within the time domain and demonstrated that capacitance (charge) boosting could be achieved without the hysteresis from the Al2O3/BaTiO3 bilayer capacitors through short-pulse charging. This work revealed that the hysteresis phenomenon in NC devices originated from the dielectric leakage of the dielectric layer. The suppression of charge injection via the dielectric leakage, which usually takes time, inhibits complete ferroelectric polarization switching during a short pulse time. It was demonstrated that a nonhysteretic NC effect can be achieved only within certain limited time and voltage ranges, but that these are sufficient for critical device applications.
RESUMO
A multielectrode array (MEA) was fabricated with electrodes consisting of iridium oxide (IrOx) electrochemically deposited on nanoporous gold (NPG) to improve the moderate charge injection limit (ca. 1 mC cm-2) of NPG MEA. IrOx was electrodeposited by performing cyclic voltammetry with an IrOx deposition solution. The IrOx was electrodeposited on Au (EIROF/Au) and on NPG (EIROF/NPG) MEA, and the samples were analyzed in terms of the charge injection limit, charge storage capacity (CSC), and electrochemical impedance. The charge injection limit of the EIROF(100-cycled)/NPG MEA was estimated to be 2.3 mC cm-2 by measuring the voltage transient, and this value is sufficiently greater than the neural damage threshold (ca. 1 mC cm-2) and is also comparable to that of sputtered IrOx films. Considering the low charge injection limit (<0.1 mC cm-2) for the EIROF(100-cycled)/Au MEA, the high charge injection limit for the EIROF/NPG MEA was explained to be a result of synergetic combination of the inherently large surface area of the NPG and electrically active EIROF. The EIROF(100-cycled)/NPG exhibited an impedance of 9.7 ± 0.45 kΩ at 1 kHz and a CSC of 8 mC/cm-2, respectively, obtained via electrochemical impedance spectroscopy and integration of the cathodic current in a cyclic voltammogram. Scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy are used to conduct an elemental mapping analysis of the cross-sectional structure of the EIROF/NPG and revealed that the EIROF had been uniformly deposited on the surface of the interconnected Au. The efficacy of the improvement in the charge injection limit of the EIROF/NPG MEA was evaluated with rat hippocampal slices. The EIROF/NPG electrodes exhibited a steeper increase in the negative peak amplitude of the field excitatory postsynaptic potentials (fEPSPs), even with an electrical stimulation of a lower amplitude (1-4 V), prolonged negative fEPSPs wave after peak response, and decreased serial reduction of fEPSPs compared to NPG MEA, all of which strongly indicate an improved charge injection for the EIROF/NPG MEA over NPG MEA.
RESUMO
We study charge injection and transport in PbSe nanocrystal thin films. By engineering the contact metallurgy and nanocrystal ligand exchange chemistry and surface passivation, we demonstrate partial Fermi-level pinning at the metal-nanocrystal interface and an insulator-to-metal transition with increased coupling and doping, allowing us to design high conductivity and mobility PbSe nanocrystal films. We construct complementary nanocrystal circuits from n-type and p-type transistors realized from a single nanocrystal material by selecting the contact metallurgy.
RESUMO
Organic semiconductors enable low-cost solution processing of optoelectronic devices on flexible substrates. Their use in contemporary applications, however, is sparse due to persistent challenges in achieving the requisite performance levels in a reliable and reproducible manner. A critical bottleneck is the inefficiency associated with charge injection. Here, large-scale simulations are employed to identify operational windows where key device parameters that are difficult to control experimentally, such as the contact resistance, become less consequential to overall device functionality. This design methodology overcomes injection barrier limitations in organic field-effect transistors (OFETs), leading to high charge carrier mobility and significantly expanding the range of suitable electrode materials. Leveraging this new understanding, all-organic, solution-deposited OFETs are successfully fabricated on flexible substrates. These devices incorporate printed contacts and showcase mobilities exceeding 5 cm2 Vs-1. These results provide a route for accessing the fundamental limits of material properties even in the absence of ideal contacts - a critical step in establishing reliable structure/property relationships and optimal material design paradigms. While reducing the injection barrier and contact resistance remains critical for achieving high OFET performance, this work demonstrates a path toward consistently achieving high charge carrier mobility through device geometry design, ultimately reducing processing complexity and cost.