Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 102: 117672, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38461554

RESUMO

Small molecules that chemically induce proximity between two proteins have been widely used to precisely modulate protein levels, stability, and activity. Recently, several studies developed novel strategies that employ heterobifunctional molecules that co-opt shuttling proteins to control the spatial localization of a target protein, unlocking new potential within this domain. Together, these studies lay the groundwork for novel targeted protein relocalization modalities that can rewire the protein circuitry and interactome to influence biological outcomes.


Assuntos
Imãs , Proteínas , Proteínas/química , Ligação Proteica
2.
Cell Chem Biol ; 28(7): 1032-1047, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930325

RESUMO

Molecular glue degraders are small, drug-like compounds that induce interactions between an E3 ubiquitin ligase and a target, which result in ubiquitination and subsequent degradation of the recruited protein. In recent years, serendipitous discoveries revealed that some preclinical and clinical compounds already work as molecular glue degraders, with many more postulated to destabilize their targets through indirect or yet unresolved mechanisms. Here we review strategies by which E3 ubiquitin ligases can be reprogrammed by monovalent degraders, with a focus on molecular glues hijacking cullin-RING ubiquitin ligases. We argue that such drugs exploit the intrinsic property of proteins to form higher-order assemblies, a phenomenon previously seen with disease-causing sequence variations. Modifications of the protein surface by a bound small molecule can change the interactome of the target protein. By inducing interactions between a ligase and a substrate, molecular glue degraders offer an exciting path for the development of novel therapeutics.


Assuntos
Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Bibliotecas de Moléculas Pequenas/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA