Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263624

RESUMO

A significant number of chemicals registered in national and regional chemical inventories require assessments of their potential "hazard" concerns posed to humans and ecological receptors. This warrants knowledge of their partitioning and reactivity properties, which are often predicted by quantitative structure-property relationships (QSPRs) and other semiempirical relationships. It is imperative to evaluate the applicability domain (AD) of these tools to ensure their suitability for assessment purpose. Here, we investigate the extent to which the ADs of commonly used QSPRs and semiempirical relationships cover seven partitioning and reactivity properties of a chemical "space" comprising 81,000+ organic chemicals registered in regulatory and academic chemical inventories. Our findings show that around or more than half of the chemicals studied are covered by at least one of the commonly used QSPRs. The investigated QSPRs demonstrate adequate AD coverage for organochlorides and organobromines but limited AD coverage for chemicals containing fluorine and phosphorus. These QSPRs exhibit limited AD coverage for atmospheric reactivity, biodegradation, and octanol-air partitioning, particularly for ionizable organic chemicals compared to nonionizable ones, challenging assessments of environmental persistence, bioaccumulation capability, and long-range transport potential. We also find that a predictive tool's AD coverage of chemicals depends on how the AD is defined, for example, by the distance of a predicted chemical from the centroid of the training chemicals or by the presence or absence of structural features.

2.
Sci Total Environ ; 945: 174138, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906298

RESUMO

The pavement asphalt properties are susceptible to deterioration under environmental factors, and the deterioration product will affect its surrounding aqueous environment. For this reason, the idealized asphalt-aggregate mixture was treated with coupled temperature, ultraviolet and aqueous solutions based on self-made multifactorial coupled simulation device. Subsequently, the deterioration of asphalt chemical properties was analyzed by fourier transform infrared spectroscopy and saturate-aromatic-resin-asphaltene tests. Meanwhile, the effect of environmental factors on leachate properties was explored based on organic matter contents and chemical elements. Based on that, the grey correlation method was adopted to correlate asphalt chemical properties and leachate properties. The results clearly showed that environmental factors increased the sulfoxide and carbonyl group content of asphalt and transformed the chemical components within it into polar substances. The asphalt chemical properties were gradually improved when coupling ultraviolet with sodium carbonate, sodium chloride and distilled water sequentially. Compared to neutral solution, alkaline solution exacerbated the effect of asphalt precipitates on leachate properties. The environmental factors increased the organic matter contents and chemical elements of leachate with time. The interaction mechanism between asphalt and aqueous environment involved the deterioration of asphalt properties caused by the presence of water, as well as the release of precipitates from aged asphalt into surrounding aqueous environment.

3.
PeerJ ; 12: e17031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464755

RESUMO

Background: In a context of long-term highly intensive grazing in grassland ecosystems, a better understanding of how quickly belowground biodiversity responds to grazing is required, especially for soil microbial diversity. Methods: In this study, we conducted a grazing experiment which included the CK (no grazing with a fenced enclosure undisturbed by livestock), light and heavy grazing treatments in a desert steppe in Inner Mongolia, China. Microbial diversity and soil chemical properties (i.e., pH value, organic carbon, inorganic nitrogen (IN, NH4+-N and NO3--N), total carbon, nitrogen, phosphorus, and available phosphorus content) both in rhizosphere and non-rhizosphere soils were analyzed to explore the responses of microbial diversity to grazing intensity and the underlying mechanisms. Results: The results showed that heavy grazing only deceased bacterial diversity in the non-rhizosphere soil, but had no any significant effects on fungal diversity regardless of rhizosphere or non-rhizosphere soils. Bacterial diversity in the rhizosphere soil was higher than that of non-rhizosphere soil only in the heavy grazing treatment. Also, heavy grazing significantly increased soil pH value but deceased NH4+-N and available phosphorus in the non-rhizosphere soil. Spearman correlation analysis showed that soil pH value was significantly negatively correlated with the bacterial diversity in the non-rhizosphere soil. Combined, our results suggest that heavy grazing decreased soil bacterial diversity in the non-rhizosphere soil by increasing soil pH value, which may be due to the accumulation of dung and urine from livestock. Our results highlight that soil pH value may be the main factor driving soil microbial diversity in grazing ecosystems, and these results can provide scientific basis for grassland management and ecological restoration in arid and semi-arid area.


Assuntos
Ecossistema , Solo , Animais , Solo/química , Pradaria , Bactérias , Carbono/análise , Nitrogênio/análise , Gado , Fósforo , Concentração de Íons de Hidrogênio
4.
J Hazard Mater ; 470: 134268, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608592

RESUMO

Ginger is consumed as a spice and medicine globally. However, pesticide residues in ginger and their residue changes during processing remain poorly understood. Our results demonstrate that clothianidin, carbendazim and imidacloprid were the top detected pesticides in 152 ginger samples with detection rates of 17.11-27.63%, and these pesticides had higher average residues of 44.07-97.63 µg/kg. Although most samples contained low levels of pesticides, 66.45% of the samples were detected with pesticides, and 38.82% were contaminated with 2-5 pesticides. Peeling, washing, boiling and pickling removed different amounts of pesticides from ginger (processing factor range: 0.06-1.56, most <1). By contrast, pesticide residues were concentrated by stir-frying and drying (0.50-6.45, most >1). Pesticide residues were influenced by pesticide physico-chemical parameters involving molecular weight, melting point, degradation point and octanol-water partition coefficient by different ginger processing methods. Chronic and acute dietary risk assessments suggest that dietary exposure to pesticides from ginger consumption was within acceptable levels for the general population. This study sheds light on pesticide residues in ginger from market to processing and is of theoretical and practical value for ensuring ginger quality and safety.


Assuntos
Contaminação de Alimentos , Resíduos de Praguicidas , Zingiber officinale , Zingiber officinale/química , Resíduos de Praguicidas/análise , Medição de Risco , Contaminação de Alimentos/análise , Manipulação de Alimentos , Humanos , Exposição Dietética/análise
5.
Foods ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928848

RESUMO

The bioactivity of tea polysaccharides (TPs) has been widely reported, but studies to date have focused on green tea. Some human health investigations have implied that black tea may possess potential antidiabetic effects, but less is known about their potential role and related antidiabetic mechanism. The present study was, therefore, conducted to investigate the chemical properties and antidiabetic activity of TPs from black tea. Monosaccharide composition revealed that Alduronic acid (77.8 mol%) considerably predominated in the fraction. TP conformation analysis indicated that three components in TPs were all typical of high-branching structures. Oral administration of TPs could effectively alleviate fasting blood glucose in type 2 diabetes mellitus (T2D) mice, with the values 23.6 ± 1.42, 19.6 ± 2.25, and 16.4 ± 2.07 mmol/L in the 200, 400, and 800 mg/kg·BW groups, respectively. Among these TPs groups, the 800 mg/kg·BW groups significantly decreased by 37.88% when compared with the T2D+water group (p < 0.05). Further studies demonstrated that TP treatment upregulated the expression of p-Akt/p-PI3K (p < 0.001). Additionally, TP treatment significantly promoted glucose transporter protein 2 (GLUT2) translocation in the liver (p < 0.001). These findings suggest that TPs from black tea protect against T2D by activating PI3K/Akt/GLUT2 signaling and might serve as a novel therapeutic candidate for T2D.

6.
Heliyon ; 10(2): e24512, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312685

RESUMO

In this study, the dried fruits of Rubus chingii Hu (Chinese name: Fu-Pen-Zi; FPZ) were processed and dried by three methods-in the shade, the sun, and the oven. The composition regarding the standard ingredient, color, and antioxidant capacities were investigated pro- and post-processing. The technique of headspace-solid-phase-microextraction-gas-chromatography-mass spectrometry (HS-SPME-GC-MS) and flavoromics were used to analyze the flavor-conferring metabolites of FPZ. The results obtained revealed that the highest use value and antioxidant capacities were detected in the FPZ fruits processed and dried in the shade. A total of 358 metabolites were detected from them mainly consisting of terpenoids, heterocyclic compounds, and esters. In differential analysis, the down-regulation of the metabolites was much greater than their up-regulation after all three drying methods. In an evaluation of the characteristic compounds and flavors produced after the three methods, there were variations mainly regarding the green and fruity odors. Therefore, considerable insights may be obtained for the development of novel agricultural methods and applications in the pharmaceutical and cosmetic industries by analyzing and comparing the variations in the chemical composition detected pre- and post-processing of the FPZ fruits. This paper provides a scientific basis for quality control in fruits and their clinical applications.

7.
Front Microbiol ; 15: 1406661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957617

RESUMO

In recent years, the rise in greenhouse gas emissions from agriculture has worsened climate change. Efficiently utilizing agricultural waste can significantly mitigate these effects. This study investigated the ecological benefits of returning peach branch waste to fields (RPBF) through three innovative strategies: (1) application of peach branch organic fertilizer (OF), (2) mushroom cultivation using peach branches as a substrate (MC), and (3) surface mulching with peach branches (SM). Conducted within a peach orchard ecosystem, our research aimed to assess these resource utilization strategies' effects on soil properties, microbial community, and carbon cycle, thereby contributing to sustainable agricultural practices. Our findings indicated that all RPBF treatments enhance soil nutrient content, enriching beneficial microorganisms, such as Humicola, Rhizobiales, and Bacillus. Moreover, soil AP and AK were observed to regulate the soil carbon cycle by altering the compositions and functions of microbial communities. Notably, OF and MC treatments were found to boost autotrophic microorganism abundance, thereby augmenting the potential for soil carbon sequestration and emission reduction. Interestingly, in peach orchard soil, fungal communities were found to contribute more greatly to SOC content than bacterial communities. However, SM treatment resulted in an increase in the presence of bacterial communities, thereby enhancing carbon emissions. Overall, this study illustrated the fundamental pathways by which RPBF treatment affects the soil carbon cycle, providing novel insights into the rational resource utilization of peach branch waste and the advancement of ecological agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA