Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
J Nanobiotechnology ; 22(1): 297, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812019

RESUMO

Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferritinas , Lasers , Mitoxantrona , Terapia Fototérmica , Animais , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Ferritinas/química , Ferritinas/metabolismo , Terapia Fototérmica/métodos , Humanos , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Nus , Feminino
2.
Mol Pharm ; 20(8): 4210-4218, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463505

RESUMO

Photothermal therapy, combined with chemotherapy, holds promising prospects for the therapeutic outcome of malignant tumors. However, the synergistic therapeutic effect suffers from low coloading capacity and inefficient synchronous tumor-targeting delivery of chemodrug and photothermal photosensitizers. Herein, we designed a versatile carrier-free nanoplatform to seek improvement for chemo-photothermal therapy. An NIR photosensitizer IR-808 was used for noninvasive cancer imaging, diagnosis, and imaging-guided photothermal therapy. A reduction-sensitive paclitaxel prodrug (PTX-SS-PEG2k) was rationally synthesized by covalently linking paclitaxel with polyethylene glycol 2000 via a disulfide bond. Then, the carrier-free nanoassemblies were constructed with an inner core of IR-808 and an amphiphilic paclitaxel prodrug shell. PTX-SS-PEG2k served as a stabilizer and chemodrug and could facilitate the self-assembly of IR-808 nanoparticles with high coloading efficiency and reduction-sensitive drug release. The versatile nanoplatform exhibited multiple advantages, including high drug payload, reduction-sensitive drug release, tumor-targeting drug delivery, and potent synergistic antitumor effect. We provide a versatile theranostic nanoplatform, which improves the effectiveness of synergetic chemo-photothermal therapy and reduces the off-target toxicity.


Assuntos
Hipertermia Induzida , Nanopartículas , Pró-Fármacos , Pró-Fármacos/química , Terapia Fototérmica , Fototerapia/métodos , Linhagem Celular Tumoral , Paclitaxel , Nanopartículas/química , Liberação Controlada de Fármacos , Doxorrubicina/química , Hipertermia Induzida/métodos
3.
J Nanobiotechnology ; 21(1): 378, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848956

RESUMO

BACKGROUND: The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS: In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION: This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Doxorrubicina , Neoplasias Pulmonares , Nanopartículas , Terapia Fototérmica , Humanos , Antígenos B7 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Ouro , Concentração de Íons de Hidrogênio , Hipertermia Induzida , Neoplasias Pulmonares/tratamento farmacológico , Fototerapia , Terapia Fototérmica/métodos , Microambiente Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838772

RESUMO

Nanodiamonds with magnetic resonance imaging (MRI) and targeted drug delivery to exert combined effects for biomedical applications have been considered to be an urgent challenge. Herein, a novel bio-nanoarchitectonics (Fe3O4@NDs) with simultaneous imaging and therapeutic capacities was fabricated by covalently conjugating nanodiamonds (NDs) with Fe3O4. Fe3O4@NDs exhibited better biocompatibility and excellent photothermal stability with superb photothermal conversion performance (37.2%). Fe3O4@NDs has high doxorubicin (DOX) loading capacity (193 mg/g) with pH and NIR-responsive release characteristics. Fe3O4@NDs loading DOX showed a combined chemo-photothermal inhibitory effect on the tumor cells. Enhanced T2-weighted MRI contrast toward the tumor, with the assistance of a magnetic field, convinced the Fe3O4@NDs gathered in the tumor more efficiently and could be used for MRI-based cancer diagnosis. Our results revealed an effective strategy to achieve a stimuli-sensitive nanoplatform for multifunctional theranostics by the combined action.


Assuntos
Hipertermia Induzida , Nanocompostos , Nanodiamantes , Nanopartículas , Terapia Fototérmica , Fototerapia/métodos , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia
5.
Mol Pharm ; 19(9): 3323-3335, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35900105

RESUMO

Combining chemotherapy with photothermal therapy (PTT) for cancer treatment could overcome the inherent limitations of both single-modality chemotherapy and PTT. However, the obstacle of accurate drug delivery to tumor sites based on chemo-photothermal remains challenging. This article describes development of a reactive oxygen species (ROS)-responsive hyaluronic acid-based nanoparticle to overcome these drawbacks. Herein, HA-TK-MTX (HTM) was synthesized by a ROS-responsive cleaved thioketal moiety linker (TK) of methotrexate (MTX) and hyaluronic acid (HA). Through hydrophobic interaction and π-π stacking interaction, a photothermal agent IR780 was integrated into the HTM, and the IR780/HTM nanoparticles (IHTM NPs) were obtained. The IHTM NPs show high photostability, excellent photothermal performance, remarkable tumor-targeting ability, and ROS sensibility. Due to the accurate drug delivery ability and superior chemo-photothermal treatment effect of IHTM NPs, the tumor inhibition rate reached 70.95% for 4T1 tumor-bearing mice. This work serves as a precedent for the chemo-photothermal therapy of cancer by rationally designing ROS-responsive nanoparticles.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/química , Ácido Hialurônico/química , Metotrexato/química , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Terapia Fototérmica , Espécies Reativas de Oxigênio/uso terapêutico
6.
Mol Pharm ; 19(12): 4538-4551, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35311257

RESUMO

Multidrug resistance (MDR) is a major obstacle to effective cancer treatment. Therefore, developing effective approaches for overcoming the limitation of MDR in cancer therapy is very essential. Chemotherapy combined with photothermal therapy (PTT) is a potential therapeutic option against MDR. Herein, we developed a subcellular-targeted near-infrared (NIR)-responsive nanomedicine (Fe3O4@PDA-TPP/S2-PEG-hyd-DOX, abbreviated as Fe3O4-ATSPD) as a new photothermal agent with improved photothermal stability and efficiency. This system demonstrates high stability in blood circulation and can be accumulated at the tumor site by magnetic targeting enhanced permeability and retention effect (EPR). Near-infrared (NIR) irradiation at the tumor site generates a photothermal effect from the photosensitizer Fe3O4@PDA, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the conjugated drugs released under low pH condition in endosomes or lysosomes cause nucleus DNA damage and cell apoptosis. This subcellular-targeted NIR-responsive nanomedicine with efficient integration of diagnosis and therapy could significantly enhance MDR cancer treatment by combination of chemotherapy and PTT.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanomedicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia
7.
J Nanobiotechnology ; 20(1): 154, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331256

RESUMO

Two-dimensional (2D) Titanium nanosheets (Ti NSs) have shown many excellent properties, such as nontoxicity, satisfactory photothermal conversion efficacy, etc. However, the biomedical applications of Ti NSs have not been intensively investigated. Herein, we synthesized a multifunctional Ti NS drug delivery system modified with polydopamine/polyethylene glycol (Ti@PDA-PEG) and applied simultaneously for photothermal therapy and chemotherapy. Doxorubicin (DOX) was utilized as a model drug. Ti@PDA-PEG NS shows an ultrahigh antitumor drug DOX loading (Ti@PDA-PEG-DOX). The prepared Ti@PDA-PEG-DOX NS as robust drug delivery system demonstrates great stability and excellent multi-response drug-release capabilities, including pH-responsive and near-infrared -responsive behavior and obviously high photothermal efficiency. Both in vitro and in vivo experimental results have shown high biosafety and outstanding antitumor effects. Therefore, this work exhibits the enormous potential of a multifunctional platform in the treatment of tumors and may stimulate interest in the exploration of other new 2D nanomaterials for biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Contenção de Riscos Biológicos , Portadores de Fármacos/uso terapêutico , Humanos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia/métodos , Titânio
8.
Mol Pharm ; 18(3): 1327-1343, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33530691

RESUMO

Single chemotherapy often causes severe adverse effects and drug resistance to limit therapeutic efficacy. As a noninvasive approach, photothermal therapy (PTT) represents an attractive option for cancer therapy due to the benefits of remote control and precise treatment methods. Nanomedicines constructed with combined chemo-photothermal properties may exert synergistic effects and improved antitumor efficacy. In this study, we developed polydopamine (PDA)-coated nanoparticles grafted with folic acid (FA) and polyethylene glycol to transport doxorubicin (DOX) for targeted cancer therapy. The results showed that this delivery vehicle has a nanoscale particle size and narrow size distribution. No particle aggregation or significant drug leakage was observed during the stability test. This system presented excellent photothermal conversion capability under near-infrared light (NIR) laser irradiation due to the PDA layer covering. In vitro dissolution profiles demonstrated that sequential and triggered DOX release from nanoparticles was pH-, NIR irradiation-, and redox level-dependent and could be best fitted with the Ritger-Peppas equation. FA modification effectively promoted the intracellular uptake of nanoparticles by HepG2 cells and therefore significantly inhibited cell recovery and induced tumor cell apoptosis. Compared to the free DOX group, nanoparticles reduced the DOX concentration in the heart to avoid drug-related cardiotoxicity. More importantly, the in vivo antitumor efficacy results showed that compared with the single chemotherapy strategy, the nanoparticle group exerted combined and satisfactory tumor growth inhibition effects with good biocompatibility. In summary, this nanocarrier delivery system can organically combine chemotherapy and PTT to achieve effective and precise cancer treatment.


Assuntos
Doxorrubicina/farmacologia , Liberação Controlada de Fármacos/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química , Polímeros/farmacologia , Animais , Doxorrubicina/química , Ácido Fólico/química , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Raios Infravermelhos , Masculino , Camundongos , Tamanho da Partícula , Fototerapia/métodos , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
9.
Mol Pharm ; 18(1): 386-402, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33296217

RESUMO

To overcome the challenges of systemic toxicity and weak tumor selectivity caused by traditional antitumor drugs, numerous nanocarrier systems have been developed in recent decades, and their therapeutic effect has been improved to varying degrees. However, because of the drug resistance effect and metastasis involved in tumor recurrence, a single chemotherapy can no longer satisfy the diversified treatment needs. Recently, the application of chemotherapy in combination with thermotherapy as a synergistic approach has been proven to be more effective, and it provides a new strategy for cancer therapy. In this work, by utilizing the unique properties of erythrocytes, a surface-modified erythrocyte membrane was constructed as a novel nanocarrier system (DOX and ICG-PLGA@RBC nanoparticles, DIRNPs for short) for the simultaneous transportation of chemotherapeutic drugs (doxorubicin, DOX) and photothermal agents (indocyanine green, ICG) to achieve the effects of long-term circulation, active tumor targeting, and triggered drug release. The results indicated that DIRNPs have a nanoscale particle size of 158.4 nm with a narrow size distribution and a negative surface charge of -5.79 mV. No particle aggregation or remarkable drug leakage was observed during the 30 day storage test, and because of the excellent photothermal conversion ability of ICG, the local temperature of DIRNPs could dramatically increase from 33.7 to 49.8 °C in 10 min under near-infrared (NIR) laser irradiation. The in vitro drug dissolution data demonstrated that the DOX release from the DIRNPs was pH-dependent and NIR-triggered. Folic acid modifications of the erythrocyte membrane effectively facilitated the intracellular uptake of DIRNPs by HepG2 cells and, as a result, it significantly inhibited tumor cell growth, promoted reactive oxygen species levels, induced cell apoptosis, and restricted cell recovery and migration. In vivo pharmacokinetics and biodistribution studies indicated that the DIRNPs prolonged the half-life of DOX from 6.03 to 17.6 h and remarkably reduced the DOX level in the heart to avoid drug-related cardiotoxicity. More importantly, the DIRNPs exerted excellent in vivo antitumor efficacy against H22 tumors with superior safety. In conclusion, utilizing the advantageous properties of erythrocytes to construct a tumor-targeted biomimetic nanocarrier for codelivery of chemotherapeutics and photothermal agents to produce synergistic effects is considered an effective method for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Ácido Fólico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada/métodos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Verde de Indocianina/metabolismo , Camundongos , Nanopartículas/administração & dosagem , Fototerapia/métodos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/fisiologia
10.
Nanomedicine ; 32: 102340, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227540

RESUMO

Copper(II) diethyldithiocarbamate complex (CuET), the metabolite of disulfiram complexed with copper, is the component responsible for cancer treatment efficacy of disulfiram. But the hydrophobic property of CuET limits its use in vivo, and an appropriate drug delivery system needs to be developed. Ultrasmall melanin nanoparticle (M-Dot) with excellent biosafety and biocompatibility properties has been synthesized in our previous studies. Herein we prepared CuET loaded with M-Dots through hydrophobic interaction, which could enhance the water solubility significantly. After the administration of M-Dots-CuET in mice tumor models, the nanoparticles showed good tumor accumulation as evidenced by the enhanced photoacoustic signal in tumor regions. M-Dots-CuET also displayed excellent tumor inhibition capability, and the tumor growth inhibition value (TGI) was 45.1%. When combined with photothermal therapy, the TGI reached up to 78.6%. In summary, M-Dots-CuET provide a new potential strategy for cancer theranostics.


Assuntos
Cobre/farmacologia , Dissulfiram/farmacologia , Melaninas/farmacologia , Neoplasias/terapia , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Ditiocarb/química , Feminino , Hipertermia Induzida , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/ultraestrutura , Técnicas Fotoacústicas , Fototerapia
11.
Lasers Surg Med ; 52(7): 682-691, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31854013

RESUMO

BACKGROUND AND OBJECTIVES: Local recurrence of cancer after surgery has long been a tough problem. In the present study, thermosensitive gel-based chemophotothermal therapy was applied to prevent the recurrence of liver cancer after surgery. STUDY DESIGN/MATERIALS AND METHODS: Mesoporous silica nanoparticles (MSNs) were used as first-level carrier to co-load doxorubicin (DOX) and ICG. Then, the drug-loaded MSNs (D-I@MSN) were incorporated into poloxamer gel. A mimic model of liver cancer recurrence after surgery was prepared by subcutaneously injecting H22 cells into the armpit of mice. Then the two-level composite gel (D-I@MSN/gel) was also subcutaneously injected at the same site before the formation of tumor, followed by 808 nm laser irradiation. RESULTS: The loading efficiency and entrapment efficiency of DOX were as high as 8.85% and 96.9%, and that of ICG were 9.24% and 99.3%, respectively. The results of in vitro cytotoxicity showed that cell viability in D-I@MSN+Laser group was only 5.8% after being irradiated by 808 nm laser for 5 minutes (0.5 W/cm2 ). In animal studies, tumor formation (tumor recurrence) was greatly inhibited in D-I@MSN+Laser group. CONCLUSIONS: The thermosensitive gel-based chemophotothermal therapy showed excellent safety and efficacy when applied in the prevention of mimic local tumor replase after surgery in mice, presenting its great potential clinically. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Fototerapia
12.
Nanomedicine ; 29: 102238, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565228

RESUMO

Oxygen-saturated perfluorohexane-cored, cisplatin (Pt)-decorated hollow gold nanospheres (Pt-HAuNS-PFH@O2) have been synthesized for ultrasound (US) imaging-guided tumor treatment depending on chemo/photothermal therapy, relief of hypoxia, and photothermal induced US contrast signal. Both NIR laser-induced hyperthermia generation by gold nanospheres and acidity triggered release of Pt resulted in high toxicity after internalization by breast cancer cells. According to ex vivo immunofluorescence investigation and in vivo pharmacodynamic studies on MDA-MB-231 tumor bearing mice, the susceptibility of tumors to Pt-HAuNS-PFH@O2 was improved by the relief of hypoxia. In addition, US imaging under different conditions verified the amplified US contrast property of Pt-HAuNS-PFH@O2 by the heat-dependent liquid-gas conversion of PFH. Overall, Pt-HAuNS-PFH@O2 can be promisingly used as an oxygen self-enriched nanoplatform for US imaging-guided chemo/photothermal therapy.


Assuntos
Neoplasias da Mama/terapia , Nanosferas/química , Oxigênio/química , Fotoquimioterapia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Ouro/química , Humanos , Camundongos , Ultrassonografia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nano Lett ; 19(12): 8550-8564, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31694378

RESUMO

Nanorobots are safe and exhibit powerful functionalities, including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as potentially toxic materials in the nanorobots, unreasonable sizes for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity. Here, we developed a multifunctional nanorobot system capable of precise magnetic control, sufficient drug loading for chemotherapy, light-triggered controlled drug release, light absorption for photothermal therapy, enhanced magnetic resonance imaging, and tumor sensing. The developed nanorobot system exhibits an in vitro synergetic antitumor effect of photothermal therapy and chemotherapy and outstanding tumor-targeting efficiency in both in vitro and in vivo environments. The results of this study encourage further explorations of an efficient active drug delivery system for cancer treatment and the development of nanorobot systems for other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hipertermia Induzida , Nanoestruturas , Neoplasias/terapia , Fototerapia , Robótica , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
14.
Nano Lett ; 19(5): 3229-3237, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30957499

RESUMO

To develop a highly efficient strategy against tumors, here, a nanocombination (PDC/P@HCuS) was designed and constructed to actualize chemo-phototherapy with the assistance of fluorescence (FL) and photoacoustic (PA) images. First, a type of organic-inorganic hybrid nanosystem (P@HCuS) was engineered by coupling the fluorescence-labeled amphiphilic fPEDC copolymer on the surface of hollow mesoporous copper sulfide nanoparticle (HCuS), in which HCuS was used as a photothermal and PA agent; fPEDC as a stabilizer, chromophore, and redox/pH-sensitive gatekeeper; and both of them as drug carriers. Then, a peptide-drug conjugate (cRGD-SMCC-DM1, PDC), as a molecular targeted maytansinoid, was loaded inside of P@HCuS to form PDC/P@HCuS. Next, the PDC/P@HCuS was investigated carefully with or without near-infrared (NIR) laser irradiation. In vitro, the nanocombination exhibited stimuli-responsive drug release, obvious cellular uptake, strong cytotoxicity to tumor cells, significant impact on cell cycle, and cytoskeleton and cellular proteomics as well as evident permeability into the tumor sphere, most of which could be boosted by NIR laser irradiation. In vivo, the nanocombinaiton exerted good FL/PA imaging features and photothermal efficiency, achieved the best antitumor efficacy in the presence of NIR laser irradiation, and showed excellent biosafety. Together, it demonstrated that the PDC/P@HCuS, representing a chemo-phototherapy based on a nanocombination associated with peptide-drug conjugate, could achieve the highly efficient antitumor effect.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Técnicas Fotoacústicas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Corantes/química , Corantes/farmacologia , Cobre/química , Cobre/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Feminino , Humanos , Hipertermia Induzida , Células MCF-7 , Maitansina/química , Maitansina/farmacologia , Nanopartículas , Peptídeos/química , Fototerapia , Sulfetos/química , Sulfetos/farmacologia
15.
Nano Lett ; 19(8): 5093-5101, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31242732

RESUMO

Due to the limitation of inorganic nanomaterials in present clinical applications induced by their inherent nonbiodegradability and latent long-term side effects, we successfully prepared double switch degradable and clearable trinickel monophosphide porous hollow nanospheres (NiP PHNPs) modified with bovine serum albumin (BSA). Attributed to their acidic and oxidative double switch degradation capacities, NiP PHNPs can be effectively excreted from mice without long-term toxicity. Moreover, because of the paramagnetic and high molar extinction coefficient property resulting from the strong absorption in the second near-infrared light (NIR II) biowindow, NiP PHNPs have potential to be used for photoacoustic imaging (PAI) and T1-weighted magnetic resonance imaging (MRI) guided photothermal ablation of tumors in the NIR II biowindow. Specifically, it is interesting that the hollow structure and acidic degradation property enable NiP PHNPs to act as intelligent drug carriers with an on-demand release ability. These findings highlight the great potential of NiP PHNPs in the cancer theranostics field and inspire us to further broaden the bioapplications of transition metal phosphides.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Nanosferas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fosfinas/uso terapêutico , Animais , Células HeLa , Humanos , Hipertermia Induzida , Imageamento por Ressonância Magnética , Camundongos , Imagem Multimodal , Nanosferas/ultraestrutura , Técnicas Fotoacústicas , Fototerapia , Porosidade , Nanomedicina Teranóstica
16.
AAPS PharmSciTech ; 21(2): 42, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897882

RESUMO

Mesoporous carriers have been widely used to deliver anticancer drugs due to their unique characteristics. In this work, mesoporous silica nanoparticles (MSN) and mesoporous carbon nanoparticles (MCN) with substantially similar and uniform particle size, specific surface area, and pore size were prepared to compare the photothermal effect, drug loading efficiencies (LE), and drug release properties. In order to improve the dispersion stability and biocompatibility of the carriers, MSN and MCN were grafted with PEG, respectively. The NIR-induced photothermal effect results indicated that MCN had a brilliant photothermal conversion efficiency due to its strong near-infrared absorption capacity, while MSN had no photothermal conversion capability. Moreover, LE of DOX in DOX/MCN-PEG reached 36.58%, higher than that in DOX/MSN-PEG, which was ascribed to non-covalent interaction of π-π stacking and electrostatic attraction. In addition, compared to DOX/MSN-PEG, DOX/MCN-PEG had a significantly increased release rate under NIR laser irradiation due to excellent photothermal conversion capability of MCN-PEG. Furthermore, cell viability assay and cellular uptake experiment results demonstrated that DOX/MCN-PEG showed a synergistic therapeutic effect in the combination of chemotherapy and phototherapy, with a combination index (CI) of 0.238.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Carbono/química , Nanopartículas/química , Dióxido de Silício/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antineoplásicos/farmacocinética , Linhagem Celular , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Excipientes , Hemólise/efeitos dos fármacos , Humanos , Tamanho da Partícula , Polietilenoglicóis , Porosidade , Coelhos
17.
Angew Chem Int Ed Engl ; 59(34): 14458-14465, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32302052

RESUMO

Limited tumor permeability of therapeutic agents is a great challenge faced by current cancer therapy methods. Herein, a kind of near infrared light (NIR)-driven nanomotor with autonomous movement, targeted ability, hierarchical porous structure, multi-drugs for cancer chemo/photothermal therapy is designed, prepared and characterized. Further, we establish a method to study the interaction between nanomotors and cells, along with their tumor permeability mechanism, including 2D cellular models, 3D multicellular tumor spheroids and in vivo models. In vivo tumor elimination results verify that the movement behaviour of the nanomotors can greatly facilitate them to eliminate tumor through multiple therapeutic methods. This work tries to establish systematic research and evaluation models, providing strategies to understand the relationship between motion behaviour and tumor permeation efficiency of nanomotors in depth.


Assuntos
Antineoplásicos/uso terapêutico , Nanoestruturas , Neoplasias/terapia , Animais , Antineoplásicos/farmacocinética , Terapia Combinada , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Endocitose , Xenoenxertos , Humanos , Raios Infravermelhos , Células MCF-7 , Neoplasias/metabolismo , Permeabilidade
18.
Mol Pharm ; 16(5): 1982-1998, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30892898

RESUMO

Locating nanomedicines at the active sites plays a pivotal role in the nanoparticle-based cancer therapy field. Herein, a multifunctional nanotherapeutic is designed by using graphene oxide (GO) nanosheets with rich carboxyl groups as the supporter for hyaluronic acid (HA)-methotrexate (MTX) prodrug modification via an adipicdihydrazide cross-linker, achieving synergistic multistage tumor-targeting and combined chemo-photothermal therapy. As a tumor-targeting biomaterial, HA can increase affinity of the nanocarrier toward CD44 receptor for enhanced cellular uptake. MTX, a chemotherapeutic agent, can also serve as a tumor-targeting enhancer toward folate receptor based on its similar structure with folic acid. The prepared nanosystems possess a sheet shape with a dynamic size of approximately 200 nm and pH-responsive drug release. Unexpectedly, the physiological stability of HA-MTX prodrug-decorated GO nanosystems in PBS, serum, and even plasma is more excellent than that of HA-decorated GO nanosystems, while both of them exhibit an enhanced photothermal effect than GO nanosheets. More importantly, because of good blood compatibility as well as reduced undesired interactions with blood components, HA-MTX prodrug-decorated GO nanosystems exhibited remarkably superior accumulation at the tumor sites by passive and active targeting mechanisms, achieving highly effective synergistic chemo-photothermal therapeutic effect upon near-infrared laser irradiation, efficient ablation of tumors, and negligible systemic toxicity. Hence, the HA-MTX prodrug-decorated hybrid nanosystems have a promising potential for synergistic multistage tumor-targeting therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Grafite/química , Nanoconjugados/química , Fotoquimioterapia/métodos , Neoplasias do Colo do Útero/terapia , Adipatos/química , Adipatos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Feminino , Grafite/metabolismo , Células HeLa , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Células MCF-7 , Metotrexato/química , Metotrexato/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células NIH 3T3 , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Pharm ; 16(6): 2470-2480, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30995065

RESUMO

Because of high drug payload and minimized burden of foreign materials in the course of metabolism and excretion, carrier-free nanomedicine based on self-assembly of small-molecule therapeutic agents has attracted considerable attention in cancer therapy. However, obstacles still remained, such as lack of targeting efficiency, poor physiological stability, and serious drug burst release. Herein, we developed a self-dual-targeting prodrug conjugate by coupling methotrexate (MTX) and doxorubicin (DOX) to a hyaluronic acid (HA) backbone which enveloped the small molecular drug coassemblies of DOX and indocyanine green for specific targeting and imaging-guided chemo-photothermal therapy (PTT). The constructed nanosystems exhibited a diameter of ∼200 nm, superior physiological stability, and improved photothermal effect. Taking advantage of functionality of MTX-HA-DOX conjugate, the nanosystems remarkably enhanced the accumulation in the tumor regions by enhanced penetration and retention effect and CD44/folate receptor-mediated endocytosis. Upon the stimuli of acid, the nanosystems showed the rapid disassembly followed by the accelerated drug release. Consequently, the nanosystems demonstrated highly efficient apoptosis in cancer cells and remarkable tumor ablation by synergy between chemotherapy and PTT upon the irradiation of near-infrared laser. The multifunctional nanosystems based on small molecular theranostic assemblies could provide a promising potential in developing dual-targeting drug delivery and imaging-guided combinational therapy.


Assuntos
Doxorrubicina/química , Ácido Hialurônico/química , Metotrexato/química , Pró-Fármacos/química , Nanomedicina Teranóstica/métodos , Células A549 , Animais , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica
20.
Pharmacol Res ; 143: 178-185, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611856

RESUMO

The current interest in cancer research is being shifted from individual therapy to combinatorial therapy. In this contribution, a novel multifunctional nanoplatform comprising alginate nanogel co-loaded with cisplatin and gold nanoparticles (AuNPs) has been firstly developed to combine photothermal therapy and chemotherapy. The antitumor efficacy of the as-prepared nanocomplex was tested against CT26 colorectal tumor model. The nanocomplex showed an improved chemotherapy efficacy than free cisplatin and caused a significantly higher tumor inhibition rate. The in vivo thermometry results indicated that the tumors treated with the nanocomplex had faster temperature rise rate under 532 nm laser irradiation and received dramatically higher thermal doses due to optical absorption properties of AuNPs. The combined action of chemo-photothermal therapy using the nanocomplex dramatically suppressed tumor growth up to 95% of control and markedly prolonged the animal survival rate. Moreover, tumor metabolism was quantified by [18F]FDG (2-deoxy-2-[18F]fluoro-D-glucose)-positron emission tomography (PET) imaging and revealed that the combination of the nanocomplex and laser irradiation have the potential to eradicate microscopic residual tumor to prevent cancer relapse. Therefore, the nanocomplex can afford a potent anticancer efficacy whereby heat and drug can be effectively deliver to the tumor, and at the same time the high dose-associated side effects due to the separate application of chemotherapy and thermal therapy could be potentially reduced.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Ouro/administração & dosagem , Hipertermia Induzida , Nanopartículas Metálicas/administração & dosagem , Nanogéis/administração & dosagem , Neoplasias/terapia , Fotoquimioterapia , Alginatos/administração & dosagem , Animais , Linhagem Celular Tumoral , Terapia Combinada , Fluordesoxiglucose F18 , Lasers , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA