RESUMO
This study aims to explore novel and reliable biomarkers for predicting hepatocellular carcinoma (HCC) prognosis. Circular RNAs (circRNAs) were determined by analysis of human circRNA arrays and quantitative reverse transcription polymerase reactions. To test for an interaction between circDLG1, we used luciferase reporter assays, RNA immunoprecipitation, and fluorescence in situ hybridization assays that were employed to test the interaction between circDLG1, miR-141-3p, and WTAP. q-RT-PCR and western blot were used to evaluate the target regulation of miR-141-3p and WTAP. shRNA-mediated knockdown of circDLG1, proliferation, migration, and invasion experiment of metastasis were used to evaluate the function of circDLG. CircDLG1 rather than lining DLG1 was upregulated in HCC tissues, from HCC patients as well as HCC cell lines compared to normal controls. circDLG1 high expression in HCC patients was correlated with shorter overall survival. Knockdown of circDLG1 and miR-141-3p mimic could inhibit the tumorigenesis of HCC cells in vivo and in vitro. Importantly, we demonstrated that circDLG1 could act as a sponge of miR-141-3p to regulate the expression of WTAP, and further suppress the tumorigenesis of HCC cells. Our study reveals that circDLG1 can serve as a novel potential circulating biomarker for the detection of HCC. circDLG1 participates in the progression of HCC cells by sponging miR-141-3p with WTAP, providing new insight into the treatment of HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Circular/genéticaRESUMO
BACKGROUND: Dysregulation of circular RNAs (circRNAs) plays an important role in the development of gastric cancer; thus, revealing the biological and molecular mechanisms of abnormally expressed circRNAs is critical for identifying novel therapeutic targets in gastric cancer. METHODS: A circRNA microarray was performed to identify differentially expressed circRNAs between primary and distant metastatic tissues and between gastric cancer tissues sensitive or resistant to anti-programmed cell death 1 (PD-1) therapy. The expression of circRNA discs large homolog 1 (DLG1) was determined in a larger cohort of primary and distant metastatic gastric cancer tissues. The role of circDLG1 in gastric cancer progression was evaluated both in vivo and in vitro, and the effect of circDLG1 on the antitumor activity of anti-PD-1 was evaluated in vivo. The interaction between circDLG1 and miR-141-3p was assessed by RNA immunoprecipitation and luciferase assays. RESULTS: circDLG1 was significantly upregulated in distant metastatic lesions and gastric cancer tissues resistant to anti-PD-1 therapy and was associated with an aggressive tumor phenotype and adverse prognosis in gastric cancer patients treated with anti-PD-1 therapy. Ectopic circDLG1 expression promoted the proliferation, migration, invasion, and immune evasion of gastric cancer cells. Mechanistically, circDLG1 interacted with miR-141-3p and acted as a miRNA sponge to increase the expression of CXCL12, which promoted gastric cancer progression and resistance to anti-PD-1-based therapy. CONCLUSIONS: Overall, our findings demonstrate how circDLG1 promotes gastric cancer cell proliferation, migration, invasion and immune evasion and provide a new perspective on the role of circRNAs during gastric cancer progression.
Assuntos
Quimiocina CXCL12/genética , Proteína 1 Homóloga a Discs-Large/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Circular , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Evasão Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Nonsmall cell lung cancer (NSCLC) is a major subtype of lung cancer, causing substantial cancer-related deaths worldwide. However, the molecular basis of NSCLC development and progression remains understudied. Recently, a circular RNA, circDLG1, has been implicated in carcinogenesis and cancer metastasis. Yet, how circDLG1 affects NSCLC progression has not been reported. Here this study aims to elucidate the role of circDLG1 in NSCLC. First, we found that circDLG1 was significantly upregulated in both the GEO dataset and NSCLC tissues. Next, we silenced the expression of circDLG1 in NSCLC cell lines. Knockdown of circDLG1 upregulated miR-144 and downregulated Protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), resulting in suppression of the proliferation activity and metastasis ability of NSCLC. In addition, circDLG1 knockdown significantly decreased the expression of the mesenchymal markers, proliferating cell nuclear antigen (PCNA), and N-cadherin, while increasing the expression level of E-cadherin. In conclusion, we demonstrate that circDLG1 promotes the pathogenesis and progression of NSCLC by regulating the miR-144/AKT/mTOR signaling axis, providing potential diagnostic and therapeutic targets for designing innovative treatment strategies.