Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microvasc Res ; 151: 104612, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839527

RESUMO

BACKGROUND AND OBJECTIVE: Literature has reported that circular RNAs (circRNAs) are crucially associated with diabetic retinopathy (DR). Furthermore, circEHMT1 has been identified to maintain endothelial cell barrier function. This study aimed to investigate the mechanisms that regulate aberrant circEHMT1 expression and its role in the pathogenesis of DR. METHODS: In this study, retinal microvascular endothelial cells were exposed to a high glucose (HG) environment, and subsequently, tube formation and intercellular junction proteins were evaluated. Furthermore, the biological functions of circEHMT1 and its potential regulatory factor, eIF4A3, in microvascular endothelial cells under HG conditions were also assessed. In addition, the regulatory role of eIF4A3 on circEHMT1 expression was confirmed. Moreover, to elucidate the in vivo functions of eIF4A3 and circEHMT1, streptozotocin (STZ) was used to establish a DR model in rats. RESULTS: It was revealed that HG condition decreased circEHMT1 and eIF4A3 expressions and reduced ZO-1, Claudin-5, and Occludin levels in retinal microvascular endothelial cells. Furthermore, it was observed that eIF4A3 could regulate the expression of circEHMT1. Overexpression of eIF4A3 or circEHMT1 under HG conditions improved endothelial cell injury and decreased tube-formation ability. Additionally, in the DR rat model, eIF4A3 overexpression restored circEHMT1 levels and ameliorated retinal vasculature changes. CONCLUSION: Altogether, eIF4A3 regulates circEHMT1 expression, thereby affecting microvascular endothelial cell injury and tube formation. Further understanding the regulatory effect of eIF4A3 on circEHMT1 may provide novel therapeutic targets for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Histona-Lisina N-Metiltransferase , Animais , Ratos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Retina/metabolismo , Vasos Retinianos/patologia , Histona-Lisina N-Metiltransferase/genética
2.
Biochem Biophys Res Commun ; 526(2): 306-313, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32209259

RESUMO

CircRNA is a kind of covalent head-to-tail looped RNA and plays an important role in tumor development. However, the identification of new potential targetable circRNAs to inhibit cancer development is still a huge challenge. In this study, we found that circEHMT1 inhibited migration and invasion of breast cancer cells. Mechanistically, we identified miR-1233-3p as a target of circEHMT1, and the circEHMT1/miR-1233-3p axis regulated matrix metalloprotease 2 (MMP2) by modulating the transcription factor Krϋppel-like factor 4 (KLF4). In summary, we showed that circEHMT1 has potential as a prognostic factor in breast cancer and played a tumor suppressor role via the circEHMT1/miR-1233-3p/KLF4/MMP2 axis.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Metaloproteinase 2 da Matriz/genética , MicroRNAs/genética , RNA Circular/genética , Animais , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA