Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Metab Brain Dis ; 37(2): 427-437, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050446

RESUMO

Ischemic stroke (IS) has become a cerebrovascular disease which seriously threatens the elderly people. It has been reported that circRNAs participate in multiple diseases, including IS. However, the role of circHECTD1 in IS remains largely unknown. To mimic IS in vitro, human cerebral microvascular endothelial cells (HCMECs) were treated with oxygen glucose deprivation/reperfusion (OGD/R). Meanwhile, MCAO mouse model was established to detect the expression of circHECTD1 in IS. qRT-PCR and western blot were used to test gene and protein expressions, respectively. CCK-8 assay was used to investigate the cell viability. Moreover, cell migration and tube formation were assessed by transwell and tube formation assays. In addition, RIP and luciferase assay were performed to explore the association among circHECTD1, miR-335 and NOTCH2. CircHECTD1 was significantly upregulated in IS. OGD/R significantly induced EndoMT in HCMECs, while knockdown of circHECTD1 notably reversed this phenomenon. In addition, silencing of circHECTD1 remarkably reversed OGD/R-induced promotion of HCMEC tube formation and migration. Meanwhile, circHECTD1 upregulated the level of NOTCH2 through binding with miR-335. Furthermore, miR-335 inhibited the process of EndoMT in IS via targeting NOTCH2. In summary, circHECTD1 knockdown significantly alleviated EndoMT process in HCMECs via mediation of miR-335/NOTCH2 axis. Thus, circHECTD1 might act as a potential target against IS.


Assuntos
Isquemia Encefálica , MicroRNAs , Idoso , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Oxigênio/metabolismo , Reperfusão
2.
J Cell Physiol ; 236(8): 5953-5965, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561315

RESUMO

Glioma is the most common type of primary brain tumor. Treatment options for recurrent gliomas include surgery, chemotherapy, and radiation therapy, but the clinical outcome is usually limited. In recent years, circular RNAs have been found to play a vital role in several human cancers. Gene Expression Omnibus database was utilized to verify the differentially expressed circRNAs. Then we detected that the expression of circular RNA circHECTD1 was significantly increased. The expression and function of circHECDT1 has not yet been reported in glioma. Then we confirmed that the level of circHECTD1 was significantly increased both in glioma tissues and cell lines, which is negatively correlated with the overall survival of patients. Knockdown of circHECTD1 inhibited proliferation and invasion in vitro, and also reduced the growth of tumor and prolonged the prognosis in vivo. Knockdown of circHECTD1 significantly elevated the miR-296-3p expression in LN229 and T98G cells. Luciferase reports and RNA immunoprecipitation data indicated that miR-296-3p was a direct target of circHECTD1 and that the miR-296-3p expression negatively regulated SLC10A7. Rescue experiments showed that the overexpression of SLC10A7 could impede the effects of circHECTD1 silencing on the proliferation and invasion of glioma cells. In this study, we identified that circHECTD1 regulates SLC10A7 by interacting with miR-296-3p in glioma cells. In conclusion, this study investigated a novel biomarker panel consisting of the circHECTD1/miR-296-3p/SLC10A7 axis, which is critical for glioma tumorigenesis and invasiveness and may represent a novel therapeutic target for intervening in glioma progression.


Assuntos
Glioma/patologia , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Circular/genética , RNA Circular/metabolismo
3.
Cancer Cell Int ; 21(1): 264, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001137

RESUMO

BACKGROUNDS: Gastric cancer (GC) is general disease in human digestive system with malignancy. Emerging findings indicated that hsa_circ_0031452 (circHECTD1) was strictly associated with carcinogenesis. Nevertheless, the role of circHECTD1 in drug-resistance still needed to be explained. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to examine the expression profiles of circHECTD1, microRNA (miR)-137, and pre-leukemia transcription factor 3 (PBX3). The function of circHECTD1 in tumorigenesis was evaluated via xenograft tumor model. The IC50 of Diosbulbin-B (DB) was detected using Cell Counting Kit-8 (CCK8). Cell-cycle and apoptosis were reckoned by flow cytometry. Besides, western blot was administrated to reckon the levels of PBX3 and cell apoptotic indicators. Moreover, the interrelation between miR-137 and circHECTD1 or PBX3 was expounded by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull down assays. RESULTS: We uncovered that circHECTD1 was ectopically up-regulated in GC tissues and cells. CircHECTD1 deficiency sensitized DB-treatment in DB-evoked AGS and HGC-27 cells. In vivo assay, circHECTD1 silencing led to the tumor reduction. Also, circHECTD1 served as miR-137 sponge in a sequence-complementary manner. Furthermore, transfection of miR-137 inhibitor markedly eliminated circHECTD1 absence-mediated promotion of DB-sensitivity in GC cells. Moreover, PBX3, a target of miR-137, play a DB-resistant role in GC cells. Fascinatingly, the deletion of PBX3 reversed the impact of miR-137 repression and circHECTD1 knockdown on DB-sensitivity in vitro. CONCLUSIONS: CircHECTD1 served as an oncogene by a novel miR-137/PBX3 axis, which might supply an underlying biomarker for the diagnosis and prognosis of GC management.

4.
J Inflamm Res ; 16: 1311-1323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998321

RESUMO

Purpose: The objective of this paper is to explore the role of circHECTD1 in vascular smooth muscle cells (VSMCs) and atherosclerosis (AS). Methods: VSMCs were treated with platelet-derived growth factor-BB (PDGF-BB) in vitro, and the level of circHECTD1 was determined using qRT-PCR. Cell proliferation, migration, and invasion were analyzed using CCK8 and transwell assays. Cell apoptosis and cell cycle were analyzed using flow cytometry. The binding interaction between circHECTD1 and KHDRBS3 or EZH2 was investigated using the RIP, RNA pull-down. Results: CircHECTD1 was upregulated in PDGF-BB-induced VSMCs with a dose-dependent and time-dependent manner. Knockdown of circHECTD1 suppressed VSMCsproliferation and migration and enhanced cell apoptosis in VSMCs, while circHECTD1 overexpression yielded opposite effects. Mechanistically, circHECTD1 could interact with KHDRBS3, thus enhanced the stability of EZH2 mRNA and increased EZH2 protein level. In addition, silencing EZH2 in VSMCs reversed the proliferation-enhancing effect of circHECTD1 overexpression. Conclusion: Our findings provided providing a potential prognostic and therapy biomarker for AS.

5.
Kaohsiung J Med Sci ; 39(7): 675-687, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096660

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) was often observed after surgeries, causing a lot of suffering to patients. Inflammation and apoptosis were critical determinants during MIRI. We conveyed experiments to reveal the regulatory functions of circHECTD1 in MIRI development. The Rat MIRI model was established and determined by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. We analyzed cell apoptosis using TUNEL and flow cytometry. Proteins expression was evaluated by western blot. The RNA level was determined by qRT-PCR. Secreted inflammatory factors were analyzed by ELISA assay. To predict the interaction sequences on circHECTD1, miR-138-5p, and ROCK2, bioinformatics analysis was performed. Dual-luciferase assay was used to confirm these interaction sequences. CircHECTD1 and ROCK2 were upregulated in the rat MIRI model, while miR-138-5p was decreased. CircHECTD1 knockdown alleviated H/R-induced inflammation in H9c2 cells. Direct interaction and regulation of circHECTD1/miR-138-5p and miR-138-5p/ROCK2 were confirmed by dual-luciferase assay. CircHECTD1 promoted H/R-induced inflammation and cell apoptosis by inhibiting miR-138-5p. miR-138-5p alleviated H/R-induced inflammation, while ectopic ROCK2 antagonized such effect of miR-138-5p. Our research suggested that the circHECTD1-modulated miR-138-5p suppressing is responsible for ROCK2 activation during H/R-induced inflammatory response, providing a novel insight into MIRI-associated inflammation.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Circular , Animais , Ratos , Apoptose/genética , Western Blotting , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Ratos Sprague-Dawley , Quinases Associadas a rho/genética , RNA Circular/genética , RNA Circular/metabolismo
6.
Inflamm Bowel Dis ; 28(2): 273-288, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34427642

RESUMO

OBJECTIVE: Ulcerative colitis (UC) is a chronic colitis with unknown etiology. Circular RNA (circRNA) has shown regulatory effect in many diseases, but the role of circRNA in UC is barely known. This study uncovers the function and regulatory mechanism of circRNA HECTD1 (circHECTD1) in UC. METHODS: Colonic mucosal tissues of 60 patients with active UC and 30 healthy controls were collected for H&E staining. Lipopolysaccharide (LPS) and dextran sulfate sodium (DSS) were used to induce inflammation and UC in Caco-2 cells and C57BL/6 mice where modification of circHECTD1, miR-182-5p and/or human antigen R (HuR) took place. The Caco-2 cells and the colon tissues of DSS-treated mice were collected for analysis of the expression levels of inflammatory cytokines, NLRP3 inflammasome, and autophagy-related proteins. The interactions among circHECTD1, miR-182-5p, and HuR were verified. RESULTS: The colonic mucosal tissues of UC patients showed impaired autophagy and decreased expressions of circHECTD1 and HuR. Overexpression of circHECTD1 or HuR or inhibition of miR-182-5p suppressed inflammation and promoted autophagy of LPS-induced Caco-2 cells. The expression of HuR was promoted by circHECTD1 via miR-182-5p in Caco-2 cells. Overexpression of circHECTD1 reduced colonic injuries and inflammation by promoting autophagy in DSS-treated mice. CONCLUSION: Overexpression of circHECTD1 alleviates UC by promoting HuR-dependent autophagy via miR-182-5p. This study highlights the therapeutic potential of circHECTD1 for UC and adds to the knowledge of circRNA in the pathogenesis of UC.


Assuntos
Colite Ulcerativa , MicroRNAs , Animais , Autofagia/genética , Células CACO-2 , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Enterócitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Ubiquitina-Proteína Ligases
7.
Bioengineered ; 13(3): 7303-7315, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246019

RESUMO

Scars are nearly impossible to avoid after a skin injury, but despite advancements in the treatment modalities, they remain a clinical problem, especially hypertrophic scars (HS). Many studies include the mechanism of formation and inhibition of HS, but it is not fully understood yet. Circular RNA HECTD1 (circHECTD1), for the first time, has been found to have roles in HS physiology. We determined the relative circHECTD1 levels in HS fibrous cells and tissues by RT-qPCR. Afterward, the effect of circHECTD1 knockdown on the proliferation, migration, invasion, fibrosis, and Transforming Growth Factor-beta/small mothers against decapentaplegic (TGF-ß/Smad) signaling was studied using CCK-8, wound healing, Transwell, and western blot assays. After the role of circHECTD1 was clarified, its targeted micro RNA (miR) was predicted using the Starbase database, and we constructed a miR-142-3p mimic to study the details of its regulation mechanism. We used the TargetScan database to predict the downstream target high mobility group box 1 (HMGB1) of miR-142-3p, and the luciferase report assay verified the binding, and then its effect was determined by RT-qPCR. circHECTD1 is highly expressed in HS tissues and human skin hypertrophic scar fibroblasts (HSF); its loss of function inhibits cell proliferation, migration, invasion, fibrosis, and TGF-ß/Smad signaling. However, miR-142-3p inhibitor reverses the effect of circHECTD1 on all the above-mentioned aspects, including HMGB1 expression. In conclusion, circHECTD1 knockdown interrupts TGF-ß/Smad signaling through miR-142-3p/HMGB1 and suppresses scar fibrosis.


Assuntos
Cicatriz Hipertrófica , Proteína HMGB1 , MicroRNAs , Proliferação de Células/genética , Cicatriz Hipertrófica/genética , Feminino , Fibroblastos/patologia , Fibrose , Humanos , MicroRNAs/genética , Mães , RNA Circular/genética , Fator de Crescimento Transformador beta/genética , Fatores de Crescimento Transformadores
8.
Front Oncol ; 11: 666391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079759

RESUMO

Glioblastoma multiform (GBM) is the most common and malignant primary brain cancer in adults, and thus, novel potential therapeutic targets for diagnosis and treatment are urgently needed. Circular RNAs (circRNAs) are a class of widespread and diverse endogenous RNAs that have been suggested as potential critical mediators during progression of various tumors. In this study, we investigated the involvement of circHECTD1 in GBM progression. CircHECTD1 Lentivirus, miR-320-5p mimic, and SLC2A1 Lentivirus were transduced into cancer cells independently or together. circHECTD1, miR-320-5p, and SLC2A1 level were detected by qRT-PCR. Western blot and qRT-PCR were applied to measure the expression of SLC2A1, CyclinD1, CDK2, and PCNA. Flow cytometry, EdU, colony formation, Transwell and wound-healing assays were conducted to assess cell proliferation and migration. Luciferase reporter assays were performed to determine the effect of miR-320-5p on circHECTD1 or SLC2A1. Xenograft experiments were implemented to evaluate tumor growth in vivo. CircHECTD1 expression led to the promotion of proliferation and migration of GBM cells. In addition, circHECTD1 acted as a ceRNA to interact with miR-320-5p, which targeted the solute carrier family 2 member 1 (SLC2A1). In vivo experiments also revealed that circHECTD1 promoted tumor growth. Collectively, our findings showed that the circHECTD1-miR-320-5p-SLC2A1 regulatory pathway promoted the progression of GBM, suggesting that circHECTD1 may be a therapeutic target for GBM.

9.
Theranostics ; 8(2): 575-592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290828

RESUMO

Rationale: Phagocytosis of silicon dioxide (SiO2) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstream molecular mechanisms and functional effects on cell apoptosis, proliferation and migration were investigated to elucidate the role of circRNAs in SiO2-induced inflammation in pulmonary macrophages. Methods: Primary cultures of alveolar macrophages from healthy donors and patients as well as the RAW264.7 macrophage cell line were used to explore the functions of circHECTD1 (HECT domain E3 ubiquitin protein ligase 1) in macrophage activation. Results: The results of the experiments indicated that 1) SiO2 concomitantly decreased circHECTD1 levels and increased HECTD1 protein expression; 2) circHECTD1 and HECTD1 were involved in SiO2-induced macrophage activation via ubiquitination; and 3) SiO2-activated macrophages promoted fibroblast proliferation and migration via the circHECTD1/HECTD1 pathway. Tissue samples from silicosis patients confirmed the upregulation of HECTD1. Conclusions: Our study elucidated a link between SiO2-induced macrophage activation and the circHECTD1/HECTD1 pathway, thereby providing new insight into the potential use of HECTD1 in the development of novel therapeutic strategies for treating silicosis.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , RNA/sangue , Ribonucleases/metabolismo , Dióxido de Silício/farmacologia , Fatores de Transcrição/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/sangue , Fibrose/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Silicose/sangue , Silicose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Autophagy ; 14(7): 1164-1184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938598

RESUMO

Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS: 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.


Assuntos
Astrócitos/metabolismo , Autofagia , Isquemia Encefálica/patologia , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , RNA/metabolismo , Acidente Vascular Cerebral/patologia , Idoso , Animais , Sequência de Bases , Infarto Encefálico/genética , Infarto Encefálico/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Feminino , Humanos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas de Transporte de Nucleosídeos , Poli(ADP-Ribose) Polimerases/genética , RNA/genética , RNA Circular , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA