Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(1): e14380, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890873

RESUMO

Labeled with pluripotent potential, the transplantation of bone marrow mesenchymal stem cells (BMSCs) is considered as a promising strategy for treating osteoporosis (OP). Melatonin (MEL) has been investigated to be an essential regulator involved in bone metabolism, as well as BMSCs differentiation. Circular RNAs (circRNAs) are a unique kind of non-coding RNA and play an important regulatory role in OP. However, whether circRNAs are implicated in the effects of MEL on BMSCs osteogenic differentiation remains largely indeterminate. Expression of circ_0005753 in human BMSCs with MEL treatment, clinical specimens diagnosed with OP, either with ovariectomy (OVX)-induced mice, was measured by RT-qPCR. Western blot was conducted to analyze protein levels of osteogenesis-related molecules (Opg, RUNX2, ALP, BMP4) and TXNIP. RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to validate the binding relationship among circ_0005753, PTBP1, and TXNIP. Alkaline phosphatase (ALP) and alizarin red staining (ARS) were performed to evaluate osteogenic capacity of BMSCs. OP mouse model was established by ovariectomy, as evaluated pathologic changes via hematoxylin-eosin (HE), Masson, and Immunohistochemistry (IHC) staining. Expression of circ_0005753 was remarkably decreased during MEL-induced osteogenic differentiation of BMSCs. Interestingly, not only circ_0005753 knockdown significantly promoted osteogenic differentiation of BMSCs, but circ_0005753 overexpression also weakened osteogenic differentiation induced by MEL treatment. Mechanistically, circ_0005753 maintained the stabilization of TXNIP mRNA via recruiting PTBP1. Additionally, reinforced circ_0005753 abrogated MEL-mediated protective effects on OP pathogenesis in a mouse model. This work shows that MEL facilitates osteogenic differentiation of BMSCs via the circ_0005753/PTBP1/TXNIP axis, which may shed light on the development of a novel therapeutic strategy to prevent OP.


Assuntos
Melatonina , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Feminino , Camundongos , Humanos , Animais , Osteogênese , Melatonina/farmacologia , RNA Circular/genética , RNA Circular/análise , RNA Circular/metabolismo , Células Cultivadas , Osteoporose/tratamento farmacológico , Osteoporose/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , MicroRNAs/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/análise , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/análise , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/farmacologia , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA