Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Automatica (Oxf) ; 100: 336-348, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31673164

RESUMO

The widespread adoption of closed-loop control in systems biology has resulted from improvements in sensors, computing, actuation, and the discovery of alternative sites of targeted drug delivery. Most control algorithms for circadian phase resetting exploit light inputs. However, recently identified small-molecule pharmaceuticals offer advantages in terms of invasiveness and potency of actuation. Herein, we develop a systematic method to control the phase of biological oscillations motivated by the recently identified small molecule circadian pharmaceutical KL001. The model-based control architecture exploits an infinitesimal parametric phase response curve (ipPRC) that is used to predict the effect of control inputs on future phase trajectories of the oscillator. The continuous time optimal control policy is first derived for phase resetting, based on the ipPRC and Pontryagin's maximum principle. Owing to practical challenges in implementing a continuous time optimal control policy, we investigate the effect of implementing the continuous time policy in a sampled time format. Specifically, we provide bounds on the errors incurred by the physiologically tractable sampled time control law. We use these results to select directions of resetting (i.e. phase advance or delay), sampling intervals, and prediction horizons for a nonlinear model predictive control (MPC) algorithm for phase resetting. The potential of this ipPRC-informed pharmaceutical nonlinear MPC is then demonstrated in silico using real-world scenarios of jet lag or rotating shift work.

2.
Am J Physiol Cell Physiol ; 304(12): C1131-40, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23596172

RESUMO

Ovarian circadian oscillators have been implicated in the reproductive processes of mammals. However, there are few reports regarding the detection of ovarian clock-controlled genes (CCGs). The present study was designed to unravel the mechanisms through which CCG ovarian circadian oscillators regulate fertility, primarily using quantitative RT-PCR and RNA interference against Bmal1 in rat granulosa cells. Mature granulosa cells were prepared from mouse Per2-destabilized luciferase (dLuc) reporter gene transgenic rats. A real-time monitoring system of Per2 promoter activity was employed to detect Per2-dLuc oscillations. The cells exposed to luteinizing hormone (LH) displayed clear Per2-dLuc oscillations and a rhythmic expression of clock genes (Bmal1, Per1, Per2, Rev-erbα, and Dbp). Meanwhile, the examined ovarian genes (Star, Cyp19a1, Cyp11a1, Ptgs2, Lhcgr, and p53) showed rhythmic transcript profiles except for Hsd3b2, indicating that these rhythmic expression genes may be CCGs. Notably, Bmal1 small interfering (si)RNA treatment significantly decreased both the amplitude of Per2-dLuc oscillations and Bmal1 mRNA levels compared with nonsilencing RNA treatment in luteinizing granulosa cells. Depletion of Bmal1 by siRNA decreased the transcript levels of clock genes (Per1, Per2, Rev-erbα, and Dbp) and examined ovarian genes (Star, Cyp19a1, Cyp11a1, Ptgs2, Hsd3b2, and Lhcgr). Accordingly, knockdown of Bmal1 also inhibited the synthesis of progesterone and prostaglandin E2, which are associated with crucial reproductive processes. Collectively, these data suggest that ovarian circadian oscillators regulate the synthesis of steroid hormones and prostaglandins through ovarian-specific CCGs in response to LH stimuli. The present study provides new insights into the physiologic significance of Bmal1 related to fertility in ovarian circadian oscillators.


Assuntos
Fatores de Transcrição ARNTL/antagonistas & inibidores , Proteínas CLOCK/genética , Regulação para Baixo/genética , Células Lúteas/metabolismo , Progesterona/antagonistas & inibidores , Prostaglandinas/genética , Fatores de Transcrição ARNTL/biossíntese , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/antagonistas & inibidores , Proteínas CLOCK/biossíntese , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Camundongos , Progesterona/biossíntese , Progesterona/genética , Prostaglandinas/biossíntese , Ratos , Ratos Transgênicos
3.
Elife ; 72018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29658882

RESUMO

Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos , Redes e Vias Metabólicas , Músculo Esquelético/fisiologia , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos
4.
Nucleus ; 8(3): 249-254, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28060565

RESUMO

Circadian clocks regulate rhythmic gene expression levels by means of mRNA oscillations that are mainly driven by post-transcriptional regulation. We identified a new post-transcriptional mechanism, which involves nuclear bodies called paraspeckles. Major components of paraspeckles including the long noncoding RNA Neat1, which is the structural component, and its major protein partners, as well as the number of paraspeckles, follow a circadian pattern in pituitary cells. Paraspeckles are known to retain within the nucleus RNAs containing inverted repeats of Alu sequences. We showed that a reporter gene in which these RNA duplex elements were inserted in the 3'-UTR region displayed a circadian expression. Moreover, circadian endogenous mRNA associated with paraspeckles lost their circadian pattern when paraspeckles were disrupted. This work not only highlights a new paraspeckle-based post-transcriptional mechanism involved in circadian gene expression but also provides the list of all mRNA associated with paraspeckles in the nucleus of pituitary cells.


Assuntos
Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Animais , Hipófise/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Front Neurosci ; 10: 567, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003802

RESUMO

Food access restriction is associated to changes in gene expression of the circadian clock system. However, there are only a few studies investigating the effects of non-photic synchronizers, such as food entrainment, on the expression of clock genes in the central oscillators. We hypothesized that different feeding restriction patterns could modulate the expression of clock genes in the suprachiasmatic nucleus (SCN) "master" clock and in extra-SCN oscillators such as the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei. Wistar rats were divided into four groups: Control group (CG; food available ad libitum), Restricted night-fed (RF-n; food access during 2 h at night), Restricted day-fed (RF-d; food access during 2 h at daytime), Day-fed (DF; food access during 12 h at daytime). After 21 days, rats were decapitated between ZT2-ZT3 (0800-0900 h); ZT11-ZT12 (1700-1800 h), or ZT17-18 (2300-2400 h). Plasma corticosterone was measured by radioimmunoassay (RIA). The expression of Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Rev-erbα, and Rorα were assessed in SCN, PVN, and ARC hypothalamic nuclei by RT-PCR and calculated by the 2[-DeltaDeltaCT(Cyclethreshold)](2-ΔΔCT) method. Restricted food availability during few h led to decreased body weight in RF-n and RF-d groups compared to controls and DF group. We also observed an anticipatory corticosterone peak before food availability in RF-n and RF-d groups. Furthermore, the pattern of clock gene expression in response to RF-n, RF-d, and DF schedules was affected differently in the SCN, PVN, and ARC hypothalamic nuclei. In conclusion, the master oscillator in SCN as well as the oscillator in PVN and ARC, all brain areas involved in food intake, responds in a tissue-specific manner to feeding restriction.

6.
Elife ; 52016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27441387

RESUMO

Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3'-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3'-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level.


Assuntos
Regiões 3' não Traduzidas , Ritmo Circadiano , Regulação da Expressão Gênica , Sequências Repetidas Invertidas , Proteínas Nucleares/biossíntese , RNA Longo não Codificante/biossíntese , Proteínas de Ligação a RNA/biossíntese , Animais , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia Intravital , Microscopia de Vídeo , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Ratos
7.
Chronobiol Int ; 32(6): 739-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26102301

RESUMO

The nuclear receptor REV-ERBα links circadian rhythms and numerous physiological processes, but its physiological role in ovaries remains largely unknown. The aim of this study was to determine the potential role of REV-ERBα in the regulation of the transcription of its putative target genes in granulosa cells (GCs) prepared from Per2-destablized luciferase (dLuc) reporter gene transgenic rats. Alas1, Ppargc1a, and Il6 were chosen as representatives for genes analysis. A real-time monitoring system of Per2 promoter activity was performed to detect Per2-dLuc circadian oscillations. Two agonists (GSK4112, heme) and an antagonist (SR8278) of REV-ERBα as well as Rev-erbα siRNA knockdown were used to identify its target genes. Clear Per2-dLuc circadian oscillations were generated in matured GCs after synchronization with GSK4112 or SR8278. GSK4112 treatment lengthened and SR8278 treatment shortened the period of circadian oscillations in matured GCs stimulated with or without luteinizing hormone (LH). GSK4112 showed an inhibitory effect on the amplitude of circadian oscillations and caused an arrhythmic expression of canonical clock genes. SR8278 also had a subtle effect on their daily expression profiles, but the treatment resulted only in the arrhythmic expression of Rev-erbα. These findings indicate the functional biological activity of REV-ERBα in response to its ligands. Its natural ligand heme further elongated the period of circadian oscillations and alleviated their amplitudes in GCs cultured with LH. Heme treatment also repressed the expressions of clock genes, Alas1, Il6, and Ppargc1a. Rev-erbα knockdown up-regulated these transcript levels. Collectively, these data extend the recent finding to rat GCs and demonstrate that REV-ERBα represses the expressions of Alas1, Ppargc1a, and Il6, providing novel insights into the physiological significance of REV-ERBα in ovarian circadian oscillators.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Interleucina-6/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Ritmo Circadiano , Feminino , Glicina/análogos & derivados , Glicina/química , Heme/química , Isoquinolinas/química , Ligantes , Ovário/metabolismo , Proteínas Circadianas Period/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Interferente Pequeno/metabolismo , Ratos , Tiofenos/química
8.
J Neuroendocrinol ; 25(12): 1273-1279, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24028332

RESUMO

Periodic ovulation in rats, mice and hamsters is the result of a surge in luteinising hormone (LH) that depends on circadian gating signals emerging from the master circadian clock within the suprachiasmatic nucleus (SCN) and rising ovarian oestrogen levels. These two signals converge into the anteroventral periventricular nucleus (AVPV) and lead to the release of kisspeptin, which is responsible for surges of gonadotrophin-releasing hormone and, in turn, of LH release. How the AVPV integrates circadian and reproductive signals remains unclear. In the present study, we show that the female rat AVPV itself shows circadian oscillations in the expression of the clock genes PER1 and BMAL1, which lie at the core circadian clockwork of mammals. In ovariectomised females treated with oestradiol (E2), these oscillations are in synchrony with the AVPV rhythmic expression of the KISS1 gene and the gene that codes for the arginine-vasopressin (AVP) receptor AVPr1a. Although clock gene oscillations are independent of oestrogen levels, circadian expression of Kiss1 and Avpr1a (also referred to as V1a) mRNA is blunted and absent, respectively, in ovariectomised animals without E2 replacement. Because AVP is considered to be a critical SCN transmitter to gate the LH surge, our data suggest that there is a circadian oscillator located in the AVPV, and that such a putative oscillator could, in an oestrogen-dependent manner, time the sensitivity to circadian signals emerging from the SCN and the release of kisspeptin.


Assuntos
Relógios Circadianos/genética , Estrogênios/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipotálamo Anterior/metabolismo , Hormônio Luteinizante/fisiologia , Ovário/fisiologia , Animais , Sequência de Bases , Primers do DNA , Feminino , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA