Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(6): 3043-3052, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788284

RESUMO

Electroencephalogram (EEG)-based brain-machine interface (BMI) has the potential to enhance rehabilitation training efficiency, but it still remains elusive regarding how to design BMI training for heterogeneous stroke patients with varied neural reorganization. Here, we hypothesize that tailoring BMI training according to different patterns of neural reorganization can contribute to a personalized rehabilitation trajectory. Thirteen stroke patients were recruited in a 2-week personalized BMI training experiment. Clinical and behavioral measurements, as well as cortical and muscular activities, were assessed before and after training. Following treatment, significant improvements were found in motor function assessment. Three types of brain activation patterns were identified during BMI tasks, namely, bilateral widespread activation, ipsilesional focusing activation, and contralesional recruitment activation. Patients with either ipsilesional dominance or contralesional dominance can achieve recovery through personalized BMI training. Results indicate that personalized BMI training tends to connect the potentially reorganized brain areas with event-contingent proprioceptive feedback. It can also be inferred that personalization plays an important role in establishing the sensorimotor loop in BMI training. With further understanding of neural rehabilitation mechanisms, personalized treatment strategy is a promising way to improve the rehabilitation efficacy and promote the clinical use of rehabilitation robots and other neurotechnologies.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Medicina de Precisão , Acidente Vascular Cerebral/terapia , Encéfalo
2.
Front Neurosci ; 12: 478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050405

RESUMO

Objective: Brain-machine interfaces (BMIs) are useful for inducing plastic changes in cortical representation. A BMI first decodes hand movements using cortical signals and then converts the decoded information into movements of a robotic hand. By using the BMI robotic hand, the cortical representation decoded by the BMI is modulated to improve decoding accuracy. We developed a BMI based on real-time magnetoencephalography (MEG) signals to control a robotic hand using decoded hand movements. Subjects were trained to use the BMI robotic hand freely for 10 min to evaluate plastic changes in the cortical representation due to the training. Method: We trained nine young healthy subjects with normal motor function. In open-loop conditions, they were instructed to grasp or open their right hands during MEG recording. Time-averaged MEG signals were then used to train a real decoder to control the robotic arm in real time. Then, subjects were instructed to control the BMI-controlled robotic hand by moving their right hands for 10 min while watching the robot's movement. During this closed-loop session, subjects tried to improve their ability to control the robot. Finally, subjects performed the same offline task to compare cortical activities related to the hand movements. As a control, we used a random decoder trained by the MEG signals with shuffled movement labels. We performed the same experiments with the random decoder as a crossover trial. To evaluate the cortical representation, cortical currents were estimated using a source localization technique. Hand movements were also decoded by a support vector machine using the MEG signals during the offline task. The classification accuracy of the movements was compared among offline tasks. Results: During the BMI training with the real decoder, the subjects succeeded in improving their accuracy in controlling the BMI robotic hand with correct rates of 0.28 ± 0.13 to 0.50 ± 0.11 (p = 0.017, n = 8, paired Student's t-test). Moreover, the classification accuracy of hand movements during the offline task was significantly increased after BMI training with the real decoder from 62.7 ± 6.5 to 70.0 ± 11.1% (p = 0.022, n = 8, t(7) = 2.93, paired Student's t-test), whereas accuracy did not significantly change after BMI training with the random decoder from 63.0 ± 8.8 to 66.4 ± 9.0% (p = 0.225, n = 8, t(7) = 1.33). Conclusion: BMI training is a useful tool to train the cortical activity necessary for BMI control and to induce some plastic changes in the activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA