Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2319664121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917003

RESUMO

Rain formation is a critical factor governing the lifecycle and radiative forcing of clouds and therefore it is a key element of weather and climate. Cloud microphysics-turbulence interactions occur across a wide range of scales and are challenging to represent in atmospheric models with limited resolution. Based on past experiments and idealized numerical simulations, it has been postulated that cloud turbulence accelerates rain formation by enhancing drop collision-coalescence. We provide substantial evidence for significant impacts of turbulence on the evolution of cloud droplet size distributions and rain formation by comparing high-resolution observations of cumulus congestus clouds with state-of-the-art large-eddy simulations coupled with a Lagrangian particle-based microphysics scheme. Turbulent coalescence must be included in the model to accurately represent the observed drop size distributions, especially for drizzle drop sizes at lower heights in the cloud. Turbulence causes earlier rain formation and greater rain accumulation compared to simulations with gravitational coalescence only. The observed rain size distribution tail just above cloud base follows a power law scaling that deviates from theoretical scalings considering either a purely gravitation collision kernel or a turbulent kernel neglecting droplet inertial effects, providing additional evidence for turbulent coalescence in clouds. In contrast, large aerosols acting as cloud condensation nuclei ("giant CCN") do not significantly impact rain formation owing to their long timescale to reach equilibrium wet size relative to the lifetime of rising cumulus thermals. Overall, turbulent drop coalescence exerts a dominant influence on rain initiation in warm cumulus clouds, with limited impacts of giant CCN.

2.
Proc Natl Acad Sci U S A ; 120(42): e2307354120, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812695

RESUMO

Entrainment of dry air into clouds strongly influences cloud optical and precipitation properties and the response of clouds to aerosol perturbations. The response of cloud droplet size distributions to entrainment-mixing is examined in the Pi convection-cloud chamber that creates a turbulent, steady-state cloud. The experiments are conducted by injecting dry air with temperature (Te) and flow rate (Qe) through a flange in the top boundary, into the otherwise well-mixed cloud, to mimic the entrainment-mixing process. Due to the large-scale circulation, the downwind region is directly affected by entrained dry air, whereas the upwind region is representative of the background conditions. Droplet concentration (Cn) and liquid water content (L) decrease in the downwind region, but the difference in the mean diameter of droplets (Dm) is small. The shape of cloud droplet size distributions relative to the injection point is unchanged, to within statistical uncertainty, resulting in a signature of inhomogeneous mixing, as expected for droplet evaporation times small compared to mixing time scales. As Te and Qe of entrained air increase, however, Cn, L, and Dm of the whole cloud system decrease, resulting in a signature of homogeneous mixing. The apparent contradiction is understood as the cloud microphysical responses to entrainment and mixing differing on local and global scales: locally inhomogeneous and globally homogeneous. This implies that global versus local sampling of clouds can lead to seemingly contradictory results for mixing, which informs the long-standing debate about the microphysical response to entrainment and the parameterization of this process for coarse-resolution models.

3.
Rev Geophys ; 58(3): e2019RG000686, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715303

RESUMO

Spaceborne radars offer a unique three-dimensional view of the atmospheric components of the Earth's hydrological cycle. Existing and planned spaceborne radar missions provide cloud and precipitation information over the oceans and land difficult to access in remote areas. A careful look into their measurement capabilities indicates considerable gaps that hinder our ability to detect and probe key cloud and precipitation processes. The international community is currently debating how the next generation of spaceborne radars shall enhance current capabilities and address remaining gaps. Part of the discussion is focused on how to best take advantage of recent advancements in radar and space platform technologies while addressing outstanding limitations. First, the observing capabilities and measurement highlights of existing and planned spaceborne radar missions including TRMM, CloudSat, GPM, RainCube, and EarthCARE are reviewed. Then, the limitations of current spaceborne observing systems, with respect to observations of low-level clouds, midlatitude and high-latitude precipitation, and convective motions, are thoroughly analyzed. Finally, the review proposes potential solutions and future research avenues to be explored. Promising paths forward include collecting observations across a gamut of frequency bands tailored to specific scientific objectives, collecting observations using mixtures of pulse lengths to overcome trade-offs in sensitivity and resolution, and flying constellations of miniaturized radars to capture rapidly evolving weather phenomena. This work aims to increase the awareness about existing limitations and gaps in spaceborne radar measurements and to increase the level of engagement of the international community in the discussions for the next generation of spaceborne radar systems.

4.
Sci Total Environ ; 904: 166582, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634734

RESUMO

Aerosol vertical distribution plays a crucial role in cloud development and thus precipitation since both aerosol indirect and semi-direct effects significantly depend on the relative position of aerosol layer in reference to cloud, but its precise influence on cloud remains unclear. In this study, we integrated multi-year Raman Lidar measurements of aerosol vertical profiles from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) facility with available Value-Added Products of cloud features to characterize aerosol vertical distributions and their impacts on warm clouds over the continental and marine ARM atmospheric observatories, i.e., Southern Great Plains (SGP) and Eastern North Atlantic (ENA). A unimodal seasonal distribution of aerosol optical depths (AODs) with a peak in summer is found at upper boundary layer over SGP, while a bimodal distribution is observed at ENA for the AODs at lower levels with a major winter-spring maximum. The diurnal mean of upper-level AOD at SGP shows a maximum in the early evening. According to the relative positions of aerosol layers to clouds we further identify three primary types of aerosol vertical distribution, including Random, Decreasing, and Bottom. It is found that the impacts of aerosols on cloud may or may not vary with aerosol vertical distribution depending on environmental conditions, as reflected by the wide variations of the relations between AOD and cloud properties. For example, as AOD increases, the liquid water paths (LWPs) tend to be reduced at SGP but enhanced at ENA. The relations of cloud droplet effective radius with AOD largely depend on aerosol vertical distributions, particularly showing positive values in the Random type under low-LWP condition (<50 g m-2). The distinct features of aerosol-cloud interactions in relation to aerosol vertical distribution are likely attributed to the continental-marine contrast in thermodynamic environments and aerosol conditions between SGP and ENA.

5.
J Geophys Res Atmos ; 127(10): e2021JD036355, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35860437

RESUMO

The current understanding of the impact of natural cloud condensation nuclei (CCN) variability on cloud properties in marine air is low, thus contributing to climate prediction uncertainty. By analyzing cloud remote sensing observations (2009-2015) at Mace Head (west coast of Ireland), we show the oceanic biota impact on the microphysical properties of stratiform clouds over the Northeast Atlantic Ocean. During spring to summer (seasons of enhanced oceanic biological activity), clouds typically host a higher number of smaller droplets resulting from increased aerosol number concentration in the CCN relevant-size range. The induced increase in cloud droplet number concentration (+100%) and decrease in their radius (-14%) are comparable in magnitude to that generated by the advection of anthropogenically influenced air masses over the background marine boundary layer. Cloud water content and albedo respond to marine CCN perturbations with positive adjustments, making clouds brighter as the number of droplets increases. Cloud susceptibility to marine aerosols overlaps with a large variability of cloud macrophysical and optical properties primarily affected by the meteorological conditions. The above findings suggest the existence of a potential feedback mechanism between marine biota and the marine cloud-climate system.

6.
Curr Clim Change Rep ; 3(3): 185-192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32025473

RESUMO

Uncertainty in the equilibrium climate sensitivity (ECS) of the Earth continues to be large. Aspects of the cloud feedback problem have been identified as fundamental to the uncertainty in ECS. Recent analyses have shown that changes to cloud forcing with climate change can be decomposed into contributions from changes in cloud occurrence that are proportional to globally averaged temperature change and changes associated with rapid adjustments in the system that are independent of changes to globally averaged surface temperature. Together these responses enhance warming due to (1) cloud feedback from increasing cloud altitude by upper tropospheric clouds and (2) decreases in cloud coverage by marine boundary layer clouds. We argue that active remote sensing from space can play a unique and crucial role in constraining our understanding of these separate phenomena. For 1, the feedback associated with changing tropical cirrus is predicted to emerge from the statistical noise of the climate system within the next one to two decades. However, active remote sensing will need to continue for that signal to be observed since accurate placement of these clouds in the vertical dimension is necessary. For 2, the processes associated with changes to marine boundary layer clouds have been linked to the coupling between cloud and precipitation microphysics and air motions over remote ocean basins where precipitation formation in shallow convection is modulated by changes to aerosols and thermodynamics. Exploiting the synergy in combined active and passive remote sensing is likely one of the only ways of constraining our evolving theoretical understanding of low-level cloud processes as represented in cloud-resolving models and for validating global-scale models.

7.
J Geophys Res Atmos ; 120(16): 8332-8344, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-27708990

RESUMO

Vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re). In situ COT, LWP, and re were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and re 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however, MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14-36%. MODIS in situ re correlations were strong, but MODIS 2.1 µm re exceeded in situ re, which contributed to LWP bias; in POST, MODIS re was 20-30% greater than in situ re. Maximum in situ re near cloud top showed comparisons nearer 1:1. Other MODIS re bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS re bias that propagates to LWP while still capturing variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA