Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202735

RESUMO

A reliable, rapid, and low-cost procedure for determining very low concentrations of hexavalent chromium (Cr) in water is discussed. The procedure is based in the classical reaction of Cr6+ with diphenylcarbazide. Once this reaction has taken place, sodium dodecylsulfate is added to obtain an ion-pair, and Triton X-114 is incorporated. Next, the heating of the mixture allows two phases that can be separated by centrifugation to be obtained in a cloud point microextraction (CPE) process. The coacervate contains all the Cr6+ originally present in the water sample, so that the measurement by molecular absorption spectrophotometry allows the concentration of the metal to be calculated. No harmful organic solvents are required. The discrimination of hexavalent and trivalent forms is achieved by including an oxidation stage with Ce4+. To take full advantage of the pre-concentration effect inherent to the coacervation process, as well as to minimize reagent consumption and waste generation, a portable mini-spectrophotometer which is compatible with microvolumes of liquid samples is used. The preconcentration factor is 415 and a chromium concentration as low as 0.02 µg L-1 can be detected. The procedure shows a good reproducibility (relative standard deviation close to 3%).

2.
Molecules ; 27(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897901

RESUMO

The hydrophobic azo dye 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR, H2L) was studied as part of a system for the centrifuge-less cloud point extraction (CL-CPE) and spectrophotometric determination of traces of cobalt. The extracted 1:2 (Co:HTAR) complex, [CoIII(HL-)(L2-)]0, shows an absorption maximum at 553 nm and contains HTAR in two different acid-base forms. Optimum conditions for its formation and CL-CPE were found as follows: 1 × 10-5 mol L-1 of HTAR, 1.64% of Triton X-114, pH of 7.8, incubation time of 20 min at ca. 50 °C, and cooling time of 30 min at ca. -20 °C. The linear range, limit of detection, and apparent molar absorptivity coefficient were 5.4-189 ng mL-1, 1.64 ng mL-1, and 2.63 × 105 L mol-1 cm-1, respectively. The developed procedure does not use any organic solvents and can be described as simple, cheap, sensitive, convenient, and environmentally friendly. It was successfully applied to the analysis of artificial mixtures and real samples, such as steel, dental alloy, rainwater, ampoules of vitamin B12, and saline solution for intravenous infusion.


Assuntos
Compostos Azo , Cobalto , Compostos Azo/química , Cobalto/análise , Solventes/química , Espectrofotometria/métodos
3.
Molecules ; 27(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080464

RESUMO

An ultrasound-assisted, one-pot cloud point extraction was developed for the determination of iron in vegetable samples by UV-Visible spectrophotometry. This method was based on the complexation of iron with an environmentally-friendly natural chelating agent extracted from Dipterocarpus intricatus Dyer fruit at pH 5.5 in the presence of Triton X-114. Reagent extraction, complexation, and preconcentration were performed simultaneously using ultrasound-assisted extraction at 45 °C. The surfactant-rich phase was diluted with ethanol and loaded through a syringe barrel packed with cotton that acted as a filter to trap the reagent powder. Analyte-entrapped on cotton was eluted using 0.1 mol·L-1 nitric acid solution. Filtrate and eluate solutions were measured absorbance of the dark-blue product at 575 nm. Influential parameters for the procedure were investigated. Under the optimum experimental conditions, the calibration curve was linear, ranging from 0.1 to 1.0 mg·L-1 with r2 = 0.997. Limits of detection and quantification were 0.03 and 0.09 mg·L-1, respectively while precision values of intra-day and inter-day were less than 5%. Recovery at 0.5 mg·L-1 ranged from 89.0 to 99.8%, while iron content in vegetable samples ranged from 2.45 to 13.36 mg/100 g. This method was cost-effective, reliable, eco-friendly, and convenient as a green analytical approach to determining iron content.


Assuntos
Frutas , Ferro , Quelantes , Concentração de Íons de Hidrogênio , Ligantes , Octoxinol , Espectrofotometria/métodos , Verduras
4.
Environ Sci Technol ; 55(8): 4783-4791, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33752329

RESUMO

The globally raising concern for nanoplastics (NPs) pollution calls for analytical methods for investigating their occurrence, fates, and effects. Counting NPs with sizes down to 50 nm in real environmental waters remains a great challenge. Herein, we developed a full method from sample pretreatment to quantitative detection for NPs in environmental waters. Various NPs of common plastic types and sizes (50-1200 nm) were successfully labeled by in situ growth of gold nanoparticles and counted by single particle inductively coupled plasma mass spectrometry. Sucrose density gradient centrifugation enables the isolation of gold-labeled NPs from homogeneously nucleated Au nanoparticles, enhancing the particle number detection limit to 4.6 × 108 NPs/L for 269 nm spherical polystyrene NPs. For real environmental water samples, the pretreatment of acid digestion with a mixture of 5 mM HNO3 and 40 mM HF eliminates the coexisting inorganic nanoparticles, while the following dual cloud-point extraction efficiently isolates NPs from various matrices and thus improves the Au-labeling efficiency. The high spiked recoveries (72.9%-92.8%) of NPs in different waters demonstrated the applicability of this method in different scenarios.


Assuntos
Ouro , Nanopartículas Metálicas , Espectrometria de Massas , Microplásticos , Tamanho da Partícula , Plasma
5.
J Sep Sci ; 44(12): 2457-2464, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33857354

RESUMO

A method for simultaneous preconcentration and determination of mercury species in water and soil samples was established using high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry after ultrasound-assisted dual-cloud point extraction. The extraction process was divided into two steps. In the first cloud point extraction, inorganic mercury and methylmercury formed chelates with sodium diethyldithiocarbamate and were extracted into Triton X-114 micelles. In the second stage, a displacement reaction between sodium diethyldithiocarbamate-inorganic mercury/methylmercury and l-cysteine occurred, and the analytes entered the l-cysteine aqueous solution under ultrasonication. This aqueous solution was directly introduced to the high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry and the detection was completed within 6 min. Under the optimum experimental conditions, the linear range was 0.10-5.0 µg/L (r ≥0.9993) for inorganic mercury and methylmercury, and the enhancement factors were 15.7 for inorganic mercury and 6.35 for methylmercury. The limits of detection for inorganic mercury and methylmercury were 0.004 and 0.016 µg/L, respectively. The approach was successfully applied to the determination of trace inorganic mercury and methylmercury in water and soil samples with good recoveries (85.3-110%). This method solved the problem of peak fusion of the two analytes and was successfully applied to the speciation analysis of mercury.

6.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210022

RESUMO

Food additive amorphous silicon dioxide (SiO2) particles are manufactured by two different methods-precipitated and fumed procedures-which can induce different physicochemical properties and biological fates. In this study, precipitated and fumed SiO2 particles were characterized in terms of constituent particle size, hydrodynamic diameter, zeta potential, surface area, and solubility. Their fates in intestinal cells, intestinal barriers, and tissues after oral administration in rats were determined by optimizing Triton X-114-based cloud point extraction (CPE). The results demonstrate that the constituent particle sizes of precipitated and fumed SiO2 particles were similar, but their aggregate states differed from biofluid types, which also affect dissolution properties. Significantly higher cellular uptake, intestinal transport amount, and tissue accumulation of precipitated SiO2 than of fumed SiO2 was found. The intracellular fates of both types of particles in intestinal cells were primarily particle forms, but slowly decomposed into ions during intestinal transport and after distribution in the liver, and completely dissolved in the bloodstream and kidneys. These findings will provide crucial information for understanding and predicting the potential toxicity of food additive SiO2 after oral intake.


Assuntos
Intestinos/química , Dióxido de Silício/administração & dosagem , Dióxido de Silício/síntese química , Administração Oral , Animais , Análise Química do Sangue , Células CACO-2 , Linhagem Celular Tumoral , Precipitação Química , Feminino , Humanos , Intestinos/citologia , Rim/química , Fígado/química , Nanopartículas , Octoxinol/química , Tamanho da Partícula , Ratos , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Solubilidade
7.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768823

RESUMO

The selection of the appropriate extraction method is crucial, especially for the receiving of active substances from plant material. The extraction using supercritical liquids and micellar-mediated extraction (MME) is the most advantageous among the alternative methods to classical solid-liquid extraction. However, the latter seems to be the best solution when the desired actives are polar. The following article presents a comprehensive review of the micellar-mediated extraction method in the last decade. The theoretical principle of the process was also refreshed and the current state of knowledge on the applications for analytical and manufacturing purposes was summarized.


Assuntos
Fracionamento Químico/métodos , Micelas , Polifenóis/isolamento & purificação , Tensoativos
8.
Anal Biochem ; 597: 113671, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32119848

RESUMO

A novel fast room temperature cloud point extraction (RT-CPE) procedure for preconcentration and spectrophotometric determination of phosphate based on the heteropoly blue formation was developed. The proposed method includes the formation of yellow molybdoantymonatophosphoric heteropoly complex, its extraction into Triton X-100 micellar phase obtained at room temperature and reduction of heteropoly complex by ascorbic acid solution in ethanol and absorbance measurement of heteropoly blue at 790 nm. Under optimal conditions (1% (v/v) of Triton X-100 and 0.05 M of ammonium benzoate for initiating of RT-CPE; 0.13 M ethanolic solution of ascorbic acid for reduction of heteropoly complex and dilution of surfactant rich phase), the calibration graph is linear in the range of phosphate concentrations of 1.58-63 µg L-1. The proposed RT-CPE procedure has been successfully applied to preconcentration phosphates and its spectrophotometric determination in water samples.


Assuntos
Fosfatos/análise , Temperatura , Poluentes Químicos da Água/química , Calibragem , Fracionamento Químico , Espectrofotometria
9.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936671

RESUMO

(1) Background: Zinc oxide (ZnO) particles are widely used as zinc (Zn) fortifiers, because Zn is essential for various cellular functions. Nanotechnology developments may lead to production of nano-sized ZnO, although nanoparticles (NPs) are not intended to be used as food additives. Current regulations do not specify the size distribution of NPs. Moreover, ZnO is easily dissolved into Zn ions under acidic conditions. However, the fate of ZnO in commercial foods or during intestinal transit is still poorly understood. (2) Methods: We established surfactant-based cloud point extraction (CPE) for ZnO NP detection as intact particle forms using pristine ZnO-NP-spiked powdered or liquid foods. The fate determination and dissolution characterization of ZnO were carried out in commercial foods and human intestinal cells using in vitro intestinal transport and ex vivo small intestine absorption models. (3) Results: The results demonstrated that the CPE can effectively separate ZnO particles and Zn ions in food matrices and cells. The major fate of ZnO in powdered foods was in particle form, in contrast to its ionic fate in liquid beverages. The fate of ZnO was closely related to the extent of its dissolution in food or biomatrices. ZnO NPs were internalized into cells in both particle and ion form, but dissolved into ions with time, probably forming a Zn-ligand complex. ZnO was transported through intestinal barriers and absorbed in the small intestine primarily as Zn ions, but a small amount of ZnO was absorbed as particles. (4) Conclusion: The fate of ZnO is highly dependent on food matrix type, showing particle and ionic fates in powdered foods and liquid beverages, respectively. The major intracellular and intestinal absorption fates of ZnO NPs were Zn ions, but a small portion of ZnO particle fate was also observed after intestinal transit. These findings suggest that the toxicity of ZnO is mainly related to the Zn ion, but potential toxicity resulting from ZnO particles cannot be completely excluded.


Assuntos
Contaminação de Alimentos/análise , Intestinos/citologia , Óxido de Zinco/análise , Transporte Biológico , Células CACO-2 , Humanos , Absorção Intestinal , Espaço Intracelular/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Espectrometria por Raios X
10.
Anal Bioanal Chem ; 411(20): 5317-5329, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165186

RESUMO

The expansion of silver nanoparticle (AgNP) applications in industry as antibacterial agents has generated an increment of their presence in the environment. Once there, their behavior is not clear because they can undergo different transformation processes that affect their transport, mobility, bioavailability, and toxicity. Therefore, the characterization and quantification of these emerging contaminants are important to understand their behavior and the toxicity effects that can be exerted on living beings. Single particle inductively coupled plasma mass spectrometry (SP-ICPMS) has demonstrated its ability to characterize and give quantitative information on AgNPs in aqueous samples. However, sometimes, the discrimination of the signal corresponding to AgNPs from the signal of dissolved species (Ag(I)) is a challenge. In the present contribution, it is shown that the presence of high amounts of Ag(I) hamper silver nanoparticle size and nanoparticle concentration determination in aqueous samples by SP-ICPMS. To facilitate signal discrimination of both chemical forms, the combination of cloud point extraction (CPE) with SP-ICPMS was studied. CPE experimental conditions to separate AgNPs from Ag(I) were assessed and adapted taking into account the characteristics of the SP-ICPMS technique. CPE and soil matrix effects on particle size were evaluated, showing that particle size was not modified after being in contact with soil matrix and after being separated by CPE. Additionally, frequently used calculation methods for SP-ICPMS data treatment were assessed. Finally, the potential of the developed methodology CPE-SP-ICPMS was evaluated in aqueous soil leachates contaminated with mixtures of AgNPs/Ag(I).

11.
Mikrochim Acta ; 186(3): 183, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771007

RESUMO

The authors describe the synthesis and characterization of 3-mercaptopropionylamidoxime functionalized gold nanoparticles (AuNPs) for visual detection of uranium (U) by cloud point extraction. The method is capable of quantifying U at the concentration limits set by the World Health Organization in drinking water i.e., 30.0 ng mL-1. The method is based on the gradual color change from red to blue that occurs as a result of the interaction between uranyl ion and the modified AuNPs leading to particle aggregation. Such analyte-triggered aggregation results in AuNP's peak absorbance quenching as well as red shift in the wavelength range of 520 to 543 nm. The colorimetric response at 520 nm is linear in the 2-100 ng mL-1 U concentration range, and the limit of detection is 0.3 ng mL-1. No interferences by other ions are found, and the relative standard deviation is ≤4% (for n = 5). The method is validated by analyzing a certified reference material (NIST SRM 1640a; natural water), and also applied to the quantification of U in four (spiked) water samples. Graphical abstract Schematic presentation of cloud point extraction (CPE) assisted coloirmetric and visual detection of uranium (U). In CPE of gold nanoparticles (AuNPs) the color of surfactant rich phase (SRP) turns red in absence of U(VI) and blue in presence of U(VI).

12.
J Food Sci Technol ; 56(2): 524-534, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906010

RESUMO

Recently, a novel technique for extraction of functional thermally sensitive bioactive components from food has been developed due to its green efficacy (no toxic chemicals) and cost effectiveness. Cloud point extraction (CPE) is one of the such best alternative techniques that can be used for extraction of wide range of organic and inorganic components using green surfactants. It is a simple, rapid and inexpensive extraction technique which involves clustering of non-ionic surfactant monomers to form a hydrophobic core (micelle), which then entraps the hydrophobic bioactive compounds within it. CPE can be applied for extraction of bioactives from food processing waste as well as separation and purification of proteins. Besides that, research has received special attention on sample preparation for analysis of food constituents in the last decade. The scope of CPE is very vast in these sectors because of the advantages of CPE over other methods. This review deals with significance of CPE method and their potential green applications in food processing.

13.
Molecules ; 23(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309038

RESUMO

A simple and sensitive cloud point extraction method for the preconcentration of ultra-trace amounts of nickel as a prior step to its determination by graphite furnace atomic absorption spectrometry was proposed. It is based on the reaction of nickel with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in HAc⁻NaAc buffer media and mixed micelle-mediated extraction of the complex using the anionic surfactant sodium dodecyl sulfate sodium (SDS) and non-ionic surfactant (1,1,3,3-Tetramethylbutyl)phenyl-polyethylene (Triton X-114). The optimal reaction and extraction conditions such as pH, concentration of 5-Br-PADMA, SDS and Triton X-114, equilibrium temperature, incubation, and centrifuge time were evaluated and optimized. Under the optimal conditions, the calibration graph was linear over the range 0.1⁻5.5 ng/mL of nickel with a correlation coefficient of 0.9942. The detection limit obtained was 0.031 ng/mL, and the relative standard deviation was 2.1% for nickel (c = 2 ng/mL, n = 6). The proposed method was successfully applied to the determination of nickel in water samples.


Assuntos
Grafite/química , Micelas , Níquel/análise , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Compostos de Anilina , Calibragem , Concentração de Íons de Hidrogênio , Íons , Limite de Detecção , Octoxinol , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Temperatura , Fatores de Tempo
14.
Molecules ; 23(5)2018 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757232

RESUMO

An effective pre-concentration method, namely amended-cloud point extraction (CPE), has been developed for the extraction and pre-concentration of neonicotinoid insecticide residues. The studied analytes including clothianidin, imidacloprid, acetamiprid, thiamethoxam and thiacloprid were chosen as a model compound. The amended-CPE procedure included two cloud point processes. Triton™ X-114 was used to extract neonicotinoid residues into the surfactant-rich phase and then the analytes were transferred into an alkaline solution with the help of ultrasound energy. The extracts were then analyzed by high-performance liquid chromatography (HPLC) coupled with a monolithic column. Several factors influencing the extraction efficiency were studied such as kind and concentration of surfactant, type and content of salts, kind and concentration of back extraction agent, and incubation temperature and time. Enrichment factors (EFs) were found in the range of 20⁻333 folds. The limits of detection of the studied neonicotinoids were in the range of 0.0003⁻0.002 µg mL−1 which are below the maximum residue limits (MRLs) established by the European Union (EU). Good repeatability was obtained with relative standard deviations lower than 1.92% and 4.54% for retention time (tR) and peak area, respectively. The developed extraction method was successfully applied for the analysis of water samples. No detectable residues of neonicotinoids in the studied samples were found.


Assuntos
Fracionamento Químico , Inseticidas/química , Neonicotinoides/química , Resíduos de Praguicidas/química , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Inseticidas/análise , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Ultrassom
15.
J Food Sci Technol ; 55(4): 1215-1223, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606736

RESUMO

The aim of this work was to explore the possibility of the application of cloud point extraction (CPE) method in micelle media to recovery betaine from beet molasses. Response surface method was employed to assess the effects of surfactant concentration, molasses concentration, incubation time, pH, electrolyte concentration, mixing time, and surfactant type on efficiency of betaine recovery from beet molasses. Also, a mathematical model was developed to predict the effect of each variable and their interactions on the efficiency of betaine recovery. The model showed that best surfactant was Triton X-114 and under the optimum conditions, betaine recovery from beet molasses was achieved up to 80% when three CPE steps with total of 1.5% (w/v) of surfactant were used. Subsequently, betaine was recovered nearly 100% from surfactant rich phase after adjusting pH at 2.5 and re-incubation at 40 °C. The results showed that the proposed method is suitable for extraction of betaine from beet molasses.

16.
Biochim Biophys Acta ; 1860(8): 1710-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26746104

RESUMO

BACKGROUND: Numerous proteins depend on correct glycosylation for their proper function and nearly all membrane, as well as secreted, proteins are glycosylated. Glycosylation of membrane proteins plays a crucial role in many processes including the intercellular recognition and intermolecular interactions on the cell surface. The composition of N-glycans attached to membrane proteins has not been sufficiently studied due to the lack of efficient and reproducible analytical methods. METHODS: The aim of this study was to optimise cloud-point extraction (CPE) of membrane proteins with the non-ionic detergent Triton X-114 and analyse their N-glycosylation using hydrophilic interaction liquid chromatography (HILIC-UPLC). Purification of isolated proteins from the excess of detergent proved to be the key step. Therefore, several purification procedures were tested to efficiently remove detergent, while retaining maximum protein recoveries. RESULTS: CPE showed to be an efficient method to simultaneously extract membrane and soluble proteins, which subsequently resulted in different N-glycan profiles of the aforementioned protein groups. The resulting protocol showed satisfactory reproducibility and potential for N-glycan analysis of both membrane and intracellular (soluble) proteins from different kinds of biological material. CONCLUSIONS: This method can be used as a new analytical tool for reliable detection and quantification of oligomannose and complex type N-glycans attached to membrane proteins, thus serving to distinguish between differences in cell types and states. GENERAL SIGNIFICANCE: The simple method was successfully optimised to generate reliable HILIC-UPLC profiles of N-glycans released from membrane proteins. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Membrana Celular/química , Glicoproteínas , Proteínas de Membrana , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Octoxinol
17.
Electrophoresis ; 38(3-4): 460-468, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27739583

RESUMO

Ultrasound-assisted extraction (UAE), cloud point extraction (CPE), and ultrasound back-extraction (UABE) techniques have been coupled for lixiviation, preconcentration, and cleanup of polybrominated diphenyl ethers (PBDEs) from milk samples for determination by gas chromatography-electron capture detection (GC-ECD). Physicochemical parameters that affect the efficiency of the extraction system were investigated using a design of experiments based on multivariate statistical tools, and considering the sample matrix along the development. The coupling of the leaching step, UAE, enhanced ca. 3.5 times the extraction efficiency of the former sample preparation methodology (CPE-UABE) leading to cleaner sample extracts suitable for GC analysis. Under optimum conditions, the proposed methodology exhibits successful performance in terms of linearity and precision, with recoveries in the range of 68-70% and LODs within the range 0.05-0.5 ng/g dry weight (d.w.). The proposed sample preparation methodology coupled three green analytical techniques. It expands the application frontiers of CPE for the analysis of biological samples by GC. The optimized methodology was used for determination of PBDEs in powder milk samples, from both commercial and human sources.


Assuntos
Química Verde/métodos , Éteres Difenil Halogenados/análise , Leite/química , Sonicação/métodos , Animais , Fracionamento Químico , Cromatografia Gasosa/métodos , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/isolamento & purificação , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Projetos de Pesquisa
18.
Anal Bioanal Chem ; 409(19): 4559-4569, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28536791

RESUMO

A hexafluoroisopropanol (HFIP)-mediated cloud point extraction (CPE) system was established. A small amount of HFIP (even 1%, v/v) can dramatically reduce the cloud point of Triton X-100 (TX-100) aqueous solution (even to 1 °C) and make liquid-liquid two-phase separation (coacervate phase and aqueous phase) occur at room temperature over a wide range of TX-100 concentration (0.5∼10%, g/mL). HFIP-mediated coacervate phase has smaller volume (volume ratio is 1.8∼8.9% relative to the volume of the total solution with 1∼5% TX-100) and larger micelle aggregates (30∼80 nm in diameter) compared to temperature-induced coacervate phase (volume ratio at 2.8∼14.0%, the diameter of micelle aggregates at 5∼30 nm). HFIP-mediated CPE was coupled to high-performance liquid chromatography with ultraviolet detection (HPLC-UV) for the extraction and detection of organic pollutants in water, namely, polycyclic aromatic hydrocarbons (PAHs), fluoroquinolones (FQs), and sulfonamides (SAs) with different polarities, charges, and hydrogen-bonding properties. HFIP-mediated CPE provides much higher extraction rates (ERs) and enrichment factors (EFs) for FQs (91∼106%, 50∼59), PAHs (63∼90%, 33∼49), and SAs (26∼55%, 16∼34) compared with the temperature-induced one (ERs: 4∼8% for FQs, 25∼46% for PAHs, and 4∼37% for SAs; EFs: 1∼3 for FQs, 6∼12 for PAHs, and 8∼13 for SAs). The limit of detection ranges from 0.24 to 0.33 ng/mL for FQs, 0.04 to 0.38 ng/mL for PAHs, and 0.63 to 1.31 ng/mL for SAs. The proposed method was applied in the analysis of real water samples, and the recovery of 79.4∼110.8% and the relative standard deviation of 0.2∼16.3% were achieved for the three types of pollutants. Graphical abstract Schematic illustration of HFIP-mediated cloud point extraction.

19.
Anal Bioanal Chem ; 409(4): 1079-1092, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27815609

RESUMO

A new method was developed for the efficient spectrophotometric determination of methylene blue (MB) dye in solutions. The method is based on a combined dispersive solid phase and cloud point extraction using Cu(OH)2 nanoflakes (as an adsorbent). Cu(OH)2 nanoflakes were synthesized by facile and fast methods and characterized using various techniques. The developed method is based on the adsorption of MB on the Cu(OH)2 nanoflakes and transfer into a surfactant-rich phase using Triton X-114 as a nonionic surfactant. Subsequently, MB dye is desorbed from Cu(OH)2 nanoflakes using a mixture of nitric acid and methanol solution and determined by UV-Vis spectrophotometry. The effects of pH, amount of Cu(OH)2 nanoflakes, volume (concentration of Triton X-114), and temperature were investigated by designing experiments using response surface methodology (RSM). A quadratic model was utilized to predict the variables. Analysis of variance (ANOVA) was applied for the analysis of variables and their interactions, and optimal conditions were established. The results demonstrated logical agreement between experimental and predicted values of the response owing to high F value, low P value, and low lack-of-fit. The calibration graph was linear in the range of 2.0-350.0 µg L-1 of MB dye with a correlation coefficient (R) of 0.9996. The limits of detection and quantification were found to be 0.65 and 2.05 µg L-1, respectively. The developed method was successfully applied to different water samples, thereby confirming the applicability of the approach. Graphical Abstract Proposed procedure.

20.
Molecules ; 22(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338642

RESUMO

A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% (c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.


Assuntos
Compostos de Anilina/química , Quelantes/química , Grafite/química , Ródio/análise , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Calibragem , Concentração de Íons de Hidrogênio , Limite de Detecção , Octoxinol , Polietilenoglicóis , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA