Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.037
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 187-194, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38088862

RESUMO

Realistically, green manufacturing of transparent superhydrophobic surfaces (SHSs) and high liquid impalement resistance for outdoor engineering are very necessary but pretty challenging. To address this, an almost all-waterborne system composed of synthesized partially open-cage fluorinated polyhedral oligomeric silsesquioxane bearing a pair of -OH (poc-FPOSS-2OH), silica sol, and resin precursor is engineered. The transparent SHSs facilely formed by this system are featured with the exclusive presence of wrapped silica nanoparticle (SiNP) dendritic networks at solid-gas interfaces. The wrapped SiNP dendritic networks have a small aggregation size and low distribution depth, making SHSs highly transparent. The Si-O polymeric wrappers render mechanical flexibility to SiNP dendritic networks and thus enable transparent SHSs to resist high-speed water jet impinging with a Weber number of ≥19 800 in conjunction with the extremely low-surface-energy poc-FPOSS-2OH, which is the highest liquid impalement resistance so far among waterborne SHSs, and can rival the state-of-the-art solventborne SHSs.

2.
Nano Lett ; 24(12): 3702-3709, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477517

RESUMO

Systematic control and design of solid-state chemical reactions are required for modifying materials properties and in novel synthesis. Understanding chemical dynamics at the nanoscale is therefore essential to revealing the key reactive pathways. Herein, we combine focused ion beam-scanning electron microscopy (FIB-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to track the migration of sodium from a borate coating to the oxide scale during in situ hot corrosion testing. We map the changing distribution of chemical elements and compounds from 50 to 850 °C to reveal how sodium diffusion induces corrosion. The results are validated by in situ X-ray diffraction and post-mortem TOF-SIMS. We additionally retrieve the through-solid sodium diffusion rate by fitting measurements to a Fickian diffusion model. This study presents a step change in analyzing microscopic diffusion mechanics with high chemical sensitivity and selectivity, a widespread analytical challenge that underpins the defining rates and mechanisms of solid-state reactions.

3.
Nano Lett ; 24(13): 3922-3929, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506481

RESUMO

Tunable thin-film coating-based reflective color displays have versatile applications including image sensors, camouflage devices, spatial light modulators, and intelligent windows. However, generating high-purity colors using such coatings have posed a challenge. Here, we reveal high-purity color generation using an ultralow-loss phase change material (Sb2S3)-based tunable aperiodic distributed Bragg reflector (A-DBR). By strategically adjusting the periodicity of the adjacent layers of A-DBRs, we realize a narrow photonic bandgap with high reflectivity to generate high-purity orange and yellow colors. In particular, we demonstrate an A-DBR with a large photonic bandgap tunability by changing the structural phase of Sb2S3 layers from amorphous to crystalline. Moreover, we experimentally tailor multistate tunable colors through external optical stimuli. Unlike conventional nano thin-film coatings, our proposed approach offers an irradiance-free, narrowband, and highly reflective color band, achieving exceptional color purity by effectively suppressing reflections in off-color bands.

4.
Small ; : e2404351, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161205

RESUMO

Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.

5.
Small ; 20(25): e2309919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377304

RESUMO

Despite gold-based nanomaterials having a unique role in nanomedicine, among other fields, synthesis limitations relating to reaction scale-up and control result in prohibitively high gold nanoparticle costs. In this work, a new preparation procedure for lipid bilayer-coated gold nanoparticles in water is presented, using sodium oleate as reductant and capping agent. The seed-free synthesis not only allows for size precision (8-30 nm) but also remarkable particle concentration (10 mm Au). These reaction efficiencies allow for multiplexing and reaction standardization in 96-well plates using conventional thermocyclers, in addition to simple particle purification via microcentrifugation. Such a multiplexing approach also enables detailed spectroscopic investigation of the nonlinear growth process and dynamic sodium oleate/oleic acid self-assembly. In addition to scalability (at gram-level), resulting gold nanoparticles are stable at physiological pH, in common cell culture media, and are autoclavable. To demonstrate the versatility and applicability of the reported method, a robust ligand exchange with thiolated polyethylene glycol analogues is also presented.


Assuntos
Ouro , Nanopartículas Metálicas , Ácido Oleico , Ouro/química , Nanopartículas Metálicas/química , Ácido Oleico/química , Água/química , Bicamadas Lipídicas/química
6.
Small ; : e2403549, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301925

RESUMO

It is important to develop low infrared (IR) emissive coating with tunable structure color to improve the infrared-visible stealth performance of military equipment. In this work, uniform ZnO spheres are used as building units to construct photonic structures with both bright adjustable structure color and low IR emissivity due to the relatively high refractive index and low IR emissivity of ZnO. The vivid tunable structural colors are provided by the photonic bandgap of ZnO photonic crystals (PCs) or the quasi-bandgap of amorphous photonic crystals (APCs), respectively. Both ZnO PCs and APCs exhibited low IR emissivity in 3-5 µm. The IR emissivity of 255 nm ZnO PC is 0.483 and the IR emissivity of 255 nm ZnO APC is 0.492 at 25 °C. With the increase of temperature, the IR emissivity of further decreased to 0.295 and 0.312 at 300 °C. These structures can be applied to a variety of surfaces, and all these structures have good thermal and light stability as well. This work may open a simple and effective way to fabricate materials with good infrared-visible stealth performance, expanding the application of ZnO PCs and APCs coatings in the camouflage area.

7.
Small ; 20(28): e2312085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342594

RESUMO

Developing high-performance lignin anti-corrosive waterborne epoxy (WEP) coatings is conducive to the advancement of environmentally friendly coatings and the value-added utilization of lignin. In this work, a functionalized biomass waterborne epoxy composite coating is prepared using quaternized sodium lignosulfonate (QLS) as a functional nanofiller for mild carbon steel protection. The results showed that QLS has excellent dispersion and interface compatibility within WEP, and its abundant phenolic hydroxyl, sulfonate, quaternary ammonium groups, and nanoparticle structure endowed the coating with excellent corrosion inhibition and superior barrier properties. The corrosion inhibition efficiency of 100 mg L-1 QLS in carbon steel immersed in a 3.5 wt% NaCl solution reached 95.76%. Furthermore, the coating maintained an impedance modulus of 2.29 × 106 Ω cm2 (|Z|0.01 Hz) after being immersed for 51 days in the high-salt system. In addition, QLS imparted UV-blocking properties and thermal-oxygen aging resistance to the coating, as evidenced by a |Z|0.01 Hz of 1.04 × 107 Ω cm2 after seven days of UV aging while still maintaining a similar magnitude as before aging. The green lignin/WEP functional coatings effectively withstand the challenging outdoor environment characterized by high salt concentration and intense UV radiation, thereby demonstrating promising prospects for application in metal protection.

8.
Electrophoresis ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287066

RESUMO

The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization-mass spectrometry (ESI-MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE-ESI-MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic-polymer layer coating was developed based on diethylaminoethyl-dextran-poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C-terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE-MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.

9.
Chemistry ; 30(5): e202303454, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37962516

RESUMO

The increasing demand for high-energy-density and high-safety energy storage devices has sparked a growing interest in all-solid-state lithium metal batteries (ASSLMBs). A high-quality inorganic solid-state electrolyte (ISE) is a fundamental requirement for ASSLMBs, and an effective ISE/Li interface is a key factor in attaining high-performance ASSLMBs. In this Concept, we initially summarize the challenges encountered by ISE/Li interfaces and delineate four commonly employed strategies for modifying the ISE/Li interface. Then, we explore the merits and drawbacks of coatings utilized as ISE/Li interfacial phases. We also delve into the commonly employed thermal bonding and innovative cold bonding methods utilized for in situ interface preparation. Lastly, we spotlight future directions for enhancing the functionality of ISE/Li interfaces and achieving high-performance ASSLMBs.

10.
Chemphyschem ; : e202400477, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076110

RESUMO

The use of ionic liquids (ILs) as corrosion inhibitors gained attention due to their attractive properties such as high inhibition efficiency and ability to absorb onto metal surfaces. In this work, six  ILs, based on the coumarate anion combined with different nitrogen cations (triethylammonium, pyrrolidinium and imidazolium with short and long alkyl chain attached to the nitrogen atom) have been synthesized and evaluated as inhibitors for steel. The anticorrosion properties of these ILs in solution were investigated electrochemically and the metal surface was analyzed by SEM. Moreover, the IL prepared from the coumarate anion and N-dimethyl-N-tetradecyl ammonium ([DTA]Cou) was incorporated into an UV-coating formulation as an additive and by designing a similar ionic monomer which covalently links to the formulation. Impedance spectroscopy during 11 days of exposure to a solution of NaCl 0,01M, confirmed the high performance of the inhibitor in both solution and when incorporated into a coating. The synthesized ILs present efficiencies in solution exceeding 70%, in particular the ILs [DTA]Cou and tetradecyl imidazolium coumarate ([C14Im]Cou) showed efficiencies of 88% and 91% respectively. The obtained inhibitors showed interesting anticorrosion behaviors and demonstrated how different cations and an increase in the chain length affect the inhibition properties.

11.
Chemphyschem ; 25(4): e202300758, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116981

RESUMO

The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.


Assuntos
Alginatos , Antineoplásicos , Humanos , Polieletrólitos/química , Alginatos/química , Hidrogéis , Polímeros , Resveratrol
12.
J Microsc ; 295(2): 177-190, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38415368

RESUMO

Long-term placement of facial implants requires avoiding the formation of fibrous tissue capsules around the artificial material by creating osteoconductive properties of the surface. Most promising approach is the deposition coatings made of materials very similar to bone mineral components, that is, calcium phosphates such as hydroxyapatite (HAp). As part of the research work, an innovative, cost-effective atmospheric pressure plasma deposition (APPD) system was used as a low-temperature coating technology for generating the HAp coatings deposition. Full microstructural characterisation of the coatings using SEM and TEM techniques was carried out in the work. It has been shown that the fully crystalline HAp powder undergoes a transformation during the coatings deposition and the material had a quasi-sintered structure after deposition. The crystalline phase content increased at the coating/substrate interface, while the surface of the HAp was amorphous. This is a very beneficial phenomenon due to the process of bioresorption. The amorphous phase undergoes much faster biodegradation than the crystalline one. In order to increase the bioactivity of the HAp, Zn particles were introduced on the surface of the coating. The TEM microstructural analysis in conjunction with the qualitative analysis of the EDS chemical composition showed that the binding of the Zn particles within the HAp matrix had diffusive character, which is very favourable from the point of view of the quality of the adhesion and the bioactivity of the coating. In the case of such a complex structure and due to its very porous nature, micromechanical analysis was carried out in situ in SEM, that is, by microhardness measurements of both the HAp matrix and the Zn particle. It was shown that the average value of HAp microhardness was 4.395 GPa ± 0.08, while the average value of Zn microhardness was 1.142 GPa ± 0.02.

13.
Macromol Rapid Commun ; 45(16): e2400170, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936823

RESUMO

A challenge remains in the development of anti-infectious coatings for the inert surfaces of biomedical devices that are prone to bacterial colonization and biofilm formation. Here, a facile photocuring method to construct functionalized polymeric coatings on inert polydimethylsiloxane (PDMS) surfaces, is developed. Using atom transfer radical polymerization (ATRP) initiator bearing thymol group, hydrophilic DMAEMA and benzophenone (BP)-containing monomers are copolymerized to form polymers with end functional groups. An end-functionalized biocidal coating is then constructed on the inert PDMS surface in one step using a photocuring reaction. The functionalized PDMS surfaces show excellent antibacterial and antifouling properties, are capable of completely eradiating MRSA within ≈6 h, and effectively inhibit the growth of biofilms. In addition, they have good stability and long-lasting antibacterial activity in body fluid environments such as 0.9% saline and urine. According to bladder model experiments, the catheter's lifespan can be extended from ≈7 to 35 days by inhibiting the growth and migration of bacteria along its inner surface. The photocuring technique is therefore very promising in terms of surface functionalization of inert biomedical devices in order to minimize the spread of infection.


Assuntos
Antibacterianos , Biofilmes , Dimetilpolisiloxanos , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Dimetilpolisiloxanos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Polímeros/química , Polímeros/farmacologia , Processos Fotoquímicos , Benzofenonas/química , Benzofenonas/farmacologia , Polimerização , Estrutura Molecular
14.
Macromol Rapid Commun ; 45(4): e2300549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983912

RESUMO

This study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. This approach combines thermoresponsive poly(2-alkyl-2-oxazoline)s, known for their inherent protein-repellent characteristics, with established antifouling motifs based on betaines. The polymer framework is constructed from various monomer types, including a novel benzophenone-modified 2-oxazoline for photocrosslinking and an azide-functionalized 2-oxazoline, allowing subsequent modification with alkyne-substituted antifouling motifs through copper(I)-catalyzed azide-alkyne cycloaddition. From these polymers surface-attached networks are created on benzophenone-modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2-alkyl-2-oxazoline)s can exhibit a lower critical solution temperature in water, their temperature-dependent solubility is compared to the swelling behavior of the surface-attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma is further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrate extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allow efficient penetration by plasma components, which can then be easily removed by rinsing with buffer.


Assuntos
Azidas , Hidrogéis , Humanos , Hidrogéis/química , Polímeros/química , Plasma , Alcinos , Benzofenonas
15.
Macromol Rapid Commun ; : e2400573, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311484

RESUMO

Cotton fabrics with the main constituent of cellulose, which is hydrophilic, bacterial infected, and flammable, are in urgent need of functionalization as a kind of widely applied material. To address these issues, in this work, modified polyelectrolyte complex (MPEC) coatings with polyethylenimine (PEI), polyphosphate (APP), and perfluorodecyltrichlorosilane modified PEI (PFTS-PEI) are prepared to construct multi-functionally gradient MPEC coatings on cotton fabrics. Stability and synergistic effects on hydrophobicity, antibacterial activity, and flame retardancy in this system have been studied. Notably, PFTS-PEI with fluorine and silicone elements are confirmed to provide hydrophobicity and durability for MPEC coatings, which not only has no negative effect on other functions but also makes some improvement in antibacterial activity. This MPEC-treated cotton fabric finally has an antibacterial rate against S. aureus and E. coli of 99.9% and 96.9%, limiting oxygen index of 28.5% and water contact angle of 118°, which can be almost maintained after 20 times washing. The modified PEC will provide an efficient strategy to achieve durable multi-functions on cellulose-based fabrics.

16.
Macromol Rapid Commun ; 45(14): e2400068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593218

RESUMO

With the advantages of lightweight and low thermal conductivity properties, polymeric foams are widely employed as thermal insulation materials for energy-saving buildings but suffer from inherent flammability. Flame-retardant coatings hold great promise for improving the fire safety of these foams without deteriorating the mechanical-physical properties of the foam. In this work, four kinds of sulfur-based flame-retardant copolymers are synthesized via a facile radical copolymerization. The sulfur-containing monomers serve as flame-retardant agents including vinyl sulfonic acid sodium (SPS), ethylene sulfonic acid sodium (VS), and sodium p-styrene sulfonate (VSS). Additionally, 2-hydroxyethyl acrylate (HEA) and 4-hydroxybutyl acrylate are employed to enable a strong interface adhesion with polymeric foams through interfacial H-bonding. By using as-synthesized waterborne flame-retardant polymeric coating with a thickness of 600 µm, the coated polyurethane foam (PUF) can achieve a desired V-0 rating during the vertical burning test with a high limiting oxygen index (LOI) of >31.5 vol%. By comparing these sulfur-containing polymeric fire-retardant coatings, poly(VS-co-HEA) coated PUF demonstrates the best interface adhesion capability and flame-retardant performance, with the lowest peak heat release rate of 166 kW m-2 and the highest LOI of 36.4 vol%. This work provides new avenues for the design and performance optimization of advanced fire-retardant polymeric coatings.


Assuntos
Retardadores de Chama , Polímeros , Poliuretanos , Enxofre , Poliuretanos/química , Polímeros/química , Enxofre/química , Retardadores de Chama/análise , Incêndios
17.
Macromol Rapid Commun ; 45(6): e2300611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158746

RESUMO

An ideal vascular phantom should be anatomically accurate, have mechanical properties as close as possible to the tissue, and be sufficiently transparent for ease of visualization. However, materials that enable the convergence of these characteristics have remained elusive. The fabrication of patient-specific vascular phantoms with high anatomical fidelity, optical transparency, and mechanical properties close to those of vascular tissue is reported. These final properties are achieved by 3D printing patient-specific vascular models with commercial elastomeric acrylic-based resins before coating them with thiol-based photopolymerizable resins. Ternary thiol-ene-acrylate chemistry is found optimal. A PETMP/allyl glycerol ether (AGE)/polyethylene glycol diacrylate (PEGDA) coating with a 30/70% AGE/PEGDA ratio applied on a flexible resin yielded elastic modulus, UTS, and elongation of 3.41 MPa, 1.76 MPa, and 63.2%, respectively, in range with the human aortic wall. The PETMP/AGE/PEGDA coating doubled the optical transmission from 40% to 80%, approaching 88% of the benchmark silicone-based elastomer. Higher transparency correlates with a decrease in surface roughness from 2000 to 90 nm after coating. Coated 3D-printed anatomical replicas are showcased for pre-procedural planning and medical training with good radio-opacity and echogenicity. Thiol-click chemistry coatings, as a surface treatment for elastomeric stereolithographic 3D-printed objects, address inherent limitations of photopolymer-based additive manufacturing.


Assuntos
Polietilenoglicóis , Compostos de Sulfidrila , Humanos , Compostos de Sulfidrila/química , Polietilenoglicóis/química , Impressão Tridimensional
18.
Appl Microbiol Biotechnol ; 108(1): 168, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261095

RESUMO

In the food industry, successful bacterial pathogen colonization and persistence begin with their adhesion to a surface, followed by the spatial development of mature biofilm of public health concerns. Compromising bacterial settlement with natural inhibitors is a promising alternative to conventional anti-fouling treatments typically based on chemical biocides that contribute to the growing burden of antimicrobial resistance. In this study, three extracellular polymeric substance (EPS) fractions extracted from microalgae biofilms of Cylindrotheca closterium (fraction C) and Tetraselmis suecica (fraction Ta rich in insoluble scale structure and fraction Tb rich in soluble EPS) were screened for their anti-adhesive properties, against eight human food-borne pathogens belonging to Escherichia coli, Staphylococcus aureus, Salmonella enterica subsp. enterica, and Listeria monocytogenes species. The results showed that the fraction Ta was the most effective inducing statistically significant reduction for three strains of E. coli, S. aureus, and L. monocytogenes. Overall, EPSs coating on polystyrene surfaces of the different fractions increased the hydrophilic character of the support. Differences in bacterial adhesion on the different coated surfaces could be explained by several dissimilarities in the structural and physicochemical EPS compositions, according to HPLC and ATR-FTIR analysis. Interestingly, while fractions Ta and Tb were extracted from the same microalgal culture, distinct adhesion patterns were observed, highlighting the importance of the extraction process. Overall, the findings showed that EPS extracted from microalgal photosynthetic biofilms can exhibit anti-adhesive effects against food-borne pathogens and could help develop sustainable and non-toxic anti-adhesive surfaces for the food industry. KEY POINTS: •EPSs from a biofilm-based culture of C. closterium/T. suecica were characterized. •Microalgal EPS extracted from T. suecica biofilms showed bacterial anti-adhesive effects. •The anti-adhesive effect is strain-specific and affects both Gram - and Gram + bacteria.


Assuntos
Clorófitas , Closterium , Microalgas , Humanos , Aderência Bacteriana , Matriz Extracelular de Substâncias Poliméricas , Escherichia coli , Staphylococcus aureus , Biofilmes
19.
J Sep Sci ; 47(2): e2300864, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286728

RESUMO

In this study, we developed physically adsorbed multi-layer coatings using poly-l-lysine or poly(diallyldimethylammonium chloride) and gold nanoparticles, which were functionalized with bovine serum albumin for the chiral separation in electrochromatography. The approach involves sequentially depositing positively charged polymers and negatively charged citrate-stabilized gold nanoparticles. By repeating this modification cycle, we created two- and four-layer coatings, which were sequentially functionalized with albumin forming three- and five-layer coatings that were finally applied for the separation of enantiomers of dl-tryptophan. The formed coatings exhibit stability across a pH range of 2-10 and feature a dense, uniform surface, as confirmed by scanning electron microscope images. The number of layers impacted nanoparticle deposition density, with five-layer coatings being denser than three-layer ones. Five-layer coatings enable baseline separation of dl-tryptophan enantiomers, whereas three-layer coatings require the presence of albumin in the background electrolyte for separation. Therefore, increasing the number of layers and gold nanoparticles density enhances albumin active center concentration on capillary walls, improving the separation of dl-tryptophan enantiomers. The five-layer coatings can be easily fabricated and possess good repeatability of analytes migration time.


Assuntos
Eletrocromatografia Capilar , Nanopartículas Metálicas , Soroalbumina Bovina/química , Eletrocromatografia Capilar/métodos , Ouro/química , Triptofano , Polímeros/química , Nanopartículas Metálicas/química , Estereoisomerismo
20.
Mar Drugs ; 22(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39057400

RESUMO

Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.


Assuntos
Organismos Aquáticos , Incrustação Biológica , Produtos Biológicos , Incrustação Biológica/prevenção & controle , Produtos Biológicos/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA