Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Annu Rev Entomol ; 69: 277-302, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37738463

RESUMO

Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.


Assuntos
Hemípteros , Características de História de Vida , Animais , Hemípteros/microbiologia , Filogenia , Bactérias , Biologia
2.
Med Vet Entomol ; 38(1): 112-117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37850372

RESUMO

The parvorder Rhynchopthirina contains three currently recognised species of lice that parasitize elephants (both African savanna elephant Loxodonta africana and Asian elephant Elephas maximus), desert warthogs (Phacochoerus aethiopicus) and Red River hogs (Potamochoerus porcus), respectively. The Asian elephant lice and the African savanna elephant lice are currently treated as the same species, Haematomyzus elephantis (Piaget, 1869), based on morphology despite the fact that their hosts diverged 8.4 million years ago. In the current study, we sequenced 23 mitochondrial (mt) genes of African savanna elephant lice collected in South Africa and analysed the sequence divergence between African savanna elephant lice and previously sequenced Asian elephant lice. Sequence comparisons revealed >23% divergence for the 23 mt genes as a whole and ~17% divergence for cox1 gene between African savanna and Asian elephant lice, which were far higher than the divergence expected within a species. Furthermore, the mt gene sequence divergences between these lice are 3.76-4.6 times higher than that between their hosts, the African savanna and Asian elephants, which are expected for the co-divergence and co-evolution between lice and their elephant hosts. We conclude that (1) H. elephantis (Piaget, 1869) contains cryptic species and (2) African savanna and Asian elephant lice are different species genetically that may have co-diverged and co-evolved with their hosts.


Assuntos
Elefantes , Genoma Mitocondrial , Ftirápteros , Suínos , Animais , Elefantes/genética , Ftirápteros/genética , África do Sul
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876746

RESUMO

Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage-superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape-associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity.


Assuntos
Bacteriófagos/patogenicidade , Microbioma Gastrointestinal , Hominidae/virologia , Viroma , Animais , Bacteriófagos/genética , Meio Ambiente , Evolução Molecular , Hominidae/classificação , Hominidae/genética , Hominidae/microbiologia , Filogenia , Comportamento Social
4.
J Virol ; 96(3): e0109821, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34668771

RESUMO

Paramyxoviruses are a diverse group of negative-sense, single-stranded RNA viruses of which several species cause significant mortality and morbidity. In recent years the collection of paramyxovirus sequences detected in wild mammals has substantially grown; however, little is known about paramyxovirus diversity in North American mammals. To better understand natural paramyxovirus diversity, host range, and host specificity, we sought to comprehensively characterize paramyxoviruses across a range of diverse cooccurring wild small mammals in southern Arizona. We used highly degenerate primers to screen fecal and urine samples and obtained a total of 55 paramyxovirus sequences from 12 rodent species and 6 bat species. We also performed Illumina transcriptome sequencing (RNA-seq) and de novo assembly on 14 of the positive samples to recover a total of 5 near-full-length viral genomes. We show there are at least two clades of rodent-borne paramyxoviruses in Arizona, while bat-associated paramyxoviruses formed a putative single clade. Using structural homology modeling of the viral attachment protein, we infer that three of the five novel viruses likely bind sialic acid in a manner similar to other respiroviruses, while the other two viruses from heteromyid rodents likely bind a novel host receptor. We find no evidence for cross-species transmission, even among closely related sympatric host species. Taken together, these data suggest paramyxoviruses are a common viral infection in some bat and rodent species present in North America and illuminate the evolution of these viruses. IMPORTANCE There are a number of viral lineages that are potential zoonotic threats to humans. One of these, paramyxoviruses have jumped into humans multiple times from wild and domestic animals. We conducted one of the largest viral surveys of wild mammals in the United States to better understand paramyxovirus diversity and evolution.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Quirópteros/virologia , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/classificação , Paramyxoviridae/genética , Sequência de Aminoácidos , Doenças dos Animais/diagnóstico , Animais , Arizona/epidemiologia , Biodiversidade , Evolução Biológica , Genoma Viral , Genômica/métodos , Geografia Médica , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Técnicas de Diagnóstico Molecular/métodos , América do Norte/epidemiologia , Filogenia , Ligação Proteica , RNA Viral , Receptores Virais/química , Receptores Virais/metabolismo , Respirovirus/classificação , Respirovirus/genética , Infecções por Respirovirus/veterinária , Roedores/virologia
5.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075934

RESUMO

Polyomaviruses (PyVs) are small DNA viruses carried by diverse vertebrates. The evolutionary relationships of viruses and hosts remain largely unclear due to very limited surveillance in sympatric communities. In order to investigate whether PyVs can transmit among different mammalian species and to identify host-switching events in the field, we conducted a systematic study of a large collection of bats (n = 1,083) from 29 sympatric communities across China which contained multiple species with frequent contact. PyVs were detected in 21 bat communities, with 192 PyVs identified in 186 bats from 15 species within 6 families representing at least 28 newly described PyVs. Surveillance results and phylogenetic analyses surprisingly revealed three interfamily PyV host-switching events in these sympatric bat communities: two distinct PyVs were identified in two bat species in restricted geographical locations, while another PyV clustered phylogenetically with PyVs carried by bats from a different host family. Virus-host relationships of all discovered PyVs were also evaluated, and no additional host-switching events were found. PyVs were identified in different horseshoe bat species in sympatric communities without observation of host-switching events, showed high genomic identities, and clustered with each other. This suggested that even for PyVs with high genomic identities in closely related host species, the potential for host switching is low. In summary, our findings revealed that PyV host switching in sympatric bat communities can occur but is limited and that host switching of bat-borne PyVs is relatively rare on the predominantly evolutionary background of codivergence with their hosts.IMPORTANCE Since the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered highly host restricted in mammals. Sympatric bat communities commonly contain several different bat species in an ecological niche facilitating viral transmission, and they therefore represent a model to identify host-switching events of PyVs. In this study, we screened PyVs in a large number of bats in sympatric communities from diverse habitats across China. We provide evidence that cross-species bat-borne PyV transmission exists, though is limited, and that host-switching events appear relatively rare during the evolutionary history of these viruses. PyVs with close genomic identities were also identified in different bat species without host-switching events. Based on these findings, we propose an evolutionary scheme for bat-borne PyVs in which limited host-switching events occur on the background of codivergence and lineage duplication, generating the viral genetic diversity in bats.


Assuntos
Quirópteros/genética , Quirópteros/virologia , Polyomavirus/genética , Animais , Evolução Biológica , China , Variação Genética/genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Infecções por Polyomavirus/virologia , Análise de Sequência de DNA/métodos
6.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794033

RESUMO

Human papillomavirus 58 (HPV58) is found in 10 to 18% of cervical cancers in East Asia but is rather uncommon elsewhere. The distribution and oncogenic potential of HPV58 variants appear to be heterogeneous, since the E7 T20I/G63S variant is more prevalent in East Asia and confers a 7- to 9-fold-higher risk of cervical precancer and cancer. However, the underlying genomic mechanisms that explain the geographic and carcinogenic diversity of HPV58 variants are still poorly understood. In this study, we used a combination of phylogenetic analyses and bioinformatics to investigate the deep evolutionary history of HPV58 complete genome variants. The initial splitting of HPV58 variants was estimated to occur 478,600 years ago (95% highest posterior density [HPD], 391,000 to 569,600 years ago). This divergence time is well within the era of speciation between Homo sapiens and Neanderthals/Denisovans and around three times longer than the modern Homo sapiens divergence times. The expansion of present-day variants in Eurasia could be the consequence of viral transmission from Neanderthals/Denisovans to non-African modern human populations through gene flow. A whole-genome sequence signature analysis identified 3 amino acid changes, 16 synonymous nucleotide changes, and a 12-bp insertion strongly associated with the E7 T20I/G63S variant that represents the A3 sublineage and carries higher carcinogenetic potential. Compared with the capsid proteins, the oncogenes E7 and E6 had increased substitution rates indicative of higher selection pressure. These data provide a comprehensive evolutionary history and genomic basis of HPV58 variants to assist further investigation of carcinogenic association and the development of diagnostic and therapeutic strategies.IMPORTANCE Papillomaviruses (PVs) are an ancient and heterogeneous group of double-stranded DNA viruses that preferentially infect the cutaneous and mucocutaneous epithelia of vertebrates. Persistent infection by specific oncogenic human papillomaviruses (HPVs), including HPV58, has been established as the primary cause of cervical cancer. In this work, we reveal the complex evolutionary history of HPV58 variants that explains the heterogeneity of oncogenic potential and geographic distribution. Our data suggest that HPV58 variants may have coevolved with archaic hominins and dispersed across the planet through host interbreeding and gene flow. Certain genes and codons of HPV58 variants representing higher carcinogenic potential and/or that are under positive selection may have important implications for viral host specificity, pathogenesis, and disease prevention.


Assuntos
Evolução Molecular , Variação Genética , Papillomaviridae/classificação , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Proteínas do Capsídeo/genética , Genoma Viral , Humanos , Filogenia , Seleção Genética
7.
Mol Phylogenet Evol ; 110: 73-80, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288943

RESUMO

Specialized species, like arboreal folivores, often develop beneficial relationships with symbionts to exploit ecologically constrained lifestyles. Although coevolution can drive speciation by specialization of a symbiont to a host, a symbiotic relationship is not indicative of coevolution between host and symbiont. We tested for coevolved relationships between highly specialized two- and three-toed sloths (Choloepus spp. and Bradypus spp., respectively) and their symbiotic algae using cophylogenies and phylogeography. Our phylogeographic analysis showed a biogeographic pattern for the sloth distribution that was not found in the algal phylogeny. We found support for congruence between the sloth and algae phylogenies, implying cospeciation, only in the Bradypus lineage. Algae host-switching occurred from Bradypus spp. to Choloepus spp. Our results support a previously hypothesized symbiotic relationship between sloths and the algae in their fur and indicate that coevolution may have played a role in algae diversification. More broadly, convergent evolution may facilitate host switching between deeply diverged host lineages.


Assuntos
Eucariotos/fisiologia , Filogenia , Filogeografia , Bichos-Preguiça/classificação , Simbiose/fisiologia , Animais , Especificidade da Espécie
8.
Mol Ecol ; 25(4): 1006-21, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26756310

RESUMO

To explore how biogeography, parasite life history and host vagility influences evolutionary codivergences, we followed a comparative phylogeography approach using a host-specific nonpermanent mite, Laelaps giganteus, that occurs on four rodent species within the genus Rhabdomys. A mtDNA COI haplotype network derived for 278 parasite specimens showed marked phylogeographic congruence with host distributions. Analysis of the less variable nuclear intron Tropomyosin was in part consistent with these results. Although distance-based cophylogenetic analyses in axparafit failed to support significant mtDNA codivergences (P ≥ 0.02), event-based analyses revealed significant cophylogeny between sampling localities of Rhabdomys and Laelaps using core-pa (P = 0.046) and jane (P = 0.026; P = 0.00). These findings, in conjunction with the weak congruence previously reported among the permanent ectoparasitic lice Polyplax and Rhabdomys, suggest that host-parasite intimacy is not the most important driver of significant codivergence in our study system. Instead, the more restricted dispersal ability of L. giganteus, when compared to Polyplax, resulted in stronger spatial structuring and this could have resulted in significant codivergence. Host switching occurred predominantly on the edges of host distributions and was probably facilitated by climate-induced range shifts. When host ranges shift, the phylogeographic structure of L. giganteus is not reflecting the host movements as most of the nest bound parasites do not disperse with the host (they miss the boat) and the genetic contribution of the few dispersing mite individuals is often overwhelmed by the large number of individuals already present in nests within the new environment (causing them to drown on arrival).


Assuntos
Distribuição Animal , Evolução Biológica , Ácaros/genética , Murinae/parasitologia , África Austral , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , Interações Hospedeiro-Parasita , Filogenia , Filogeografia , Análise de Sequência de DNA
9.
Mol Biol Evol ; 31(9): 2356-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916030

RESUMO

Herpesviruses have been infecting and codiverging with their vertebrate hosts for hundreds of millions of years. The primate simplex viruses exemplify this pattern of virus-host codivergence, at a minimum, as far back as the most recent common ancestor of New World monkeys, Old World monkeys, and apes. Humans are the only primate species known to be infected with two distinct herpes simplex viruses: HSV-1 and HSV-2. Human herpes simplex viruses are ubiquitous, with over two-thirds of the human population infected by at least one virus. Here, we investigated whether the additional human simplex virus is the result of ancient viral lineage duplication or cross-species transmission. We found that standard phylogenetic models of nucleotide substitution are inadequate for distinguishing among these competing hypotheses; the extent of synonymous substitutions causes a substantial underestimation of the lengths of some of the branches in the phylogeny, consistent with observations in other viruses (e.g., avian influenza, Ebola, and coronaviruses). To more accurately estimate ancient viral divergence times, we applied a branch-site random effects likelihood model of molecular evolution that allows the strength of natural selection to vary across both the viral phylogeny and the gene alignment. This selection-informed model favored a scenario in which HSV-1 is the result of ancient codivergence and HSV-2 arose from a cross-species transmission event from the ancestor of modern chimpanzees to an extinct Homo precursor of modern humans, around 1.6 Ma. These results provide a new framework for understanding human herpes simplex virus evolution and demonstrate the importance of using selection-informed models of sequence evolution when investigating viral origin hypotheses.


Assuntos
Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/classificação , Herpesvirus Humano 2/genética , Animais , Biologia Computacional , Evolução Molecular , Humanos , Funções Verossimilhança , Mutação , Pan troglodytes/virologia , Filogenia , Seleção Genética
10.
Biol Lett ; 10(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25099959

RESUMO

Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host-parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.


Assuntos
Evolução Biológica , Especiação Genética , Falcões/genética , Falcões/parasitologia , Ftirápteros/genética , Animais , Equador , Variação Genética , Geografia , Ilhas , Infestações por Piolhos
11.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700925

RESUMO

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Assuntos
Infecções por Paramyxoviridae , Paramyxovirinae , Paramyxovirinae/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/veterinária , Mamíferos , China , Filogenia , Genoma Viral , Especificidade de Hospedeiro
12.
Virology ; 598: 110173, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018684

RESUMO

Wild birds harbour a vast diversity of adenoviruses that remain uncharacterised with respect to their genome organisation and evolutionary relatedness within complex host ecosystems. Here, we characterise a novel adenovirus type within Aviadenovirus genus associated with severe necrotising hepatitis in a captive Timneh grey parrot, tentatively named as Timneh grey parrot adenovirus 1 (TpAdV-1). The TpAdV-1 genome is 39,867 bp and encodes 46 putative genes with seven hitherto not described ones. Comparative genomics and phylogenetic analyses revealed highest nucleotide identity with psittacine adenovirus 1 and psittacine adenovirus 4 that formed a discrete monophyletic clade within Aviadenovirus lineage suggesting a deep host co-divergent lineage within Psittaciformes hosts. Several recombination breakpoints were identified within the TpAdV-1 genome, which highlighted an ancient evolutionary relationship across the genera Aviadenovirus, Mastadenovirus and Atadenovirus. This study hints towards a host-adapted sub-lineage of avian adenovirus capable of having significant host virulence in Psittaciformes birds augmented with ecological opportunity.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves , Genoma Viral , Papagaios , Filogenia , Animais , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Aviadenovirus/genética , Aviadenovirus/classificação , Aviadenovirus/isolamento & purificação , Aviadenovirus/patogenicidade , Papagaios/virologia , Doenças das Aves/virologia
13.
BMC Ecol Evol ; 24(1): 81, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872095

RESUMO

BACKGROUND: New Zealand is home to over 120 native endemic species of skinks and geckos that radiated over the last 20-40 million years, likely driven by the exploitation of diverse habitats formed during the Miocene. The recent radiation of animal hosts may facilitate cross-species virus transmission, likely reflecting their close genetic relationships and therefore relatively low barriers for viruses to emerge in new hosts. Conversely, as animal hosts adapt to new niches, even within specific geographic locations, so too could their viruses. Consequently, animals that have niche-specialised following radiations may be expected to harbour genetically distinct viruses. Through a metatranscriptomic analysis of eight of New Zealand's native skink and gecko species, as well as the only introduced lizard species, the rainbow skink (Lampropholis delicata), we aimed to reveal the diversity of viruses in these hosts and determine whether and how the radiation of skinks and geckos in New Zealand has impacted virus diversity and evolution. RESULTS: We identified a total of 15 novel reptilian viruses spanning 11 different viral families, across seven of the nine species sampled. Notably, we detected no viral host-switching among the native animals analysed, even between those sampled from the same geographic location. This is compatible with the idea that host speciation has likely resulted in isolated, niche-constrained viral populations that have prevented cross-species transmission. Using a protein structural similarity-based approach, we further identified a highly divergent bunya-like virus that potentially formed a new family within the Bunyavirales. CONCLUSIONS: This study has broadened our understanding of reptilian viruses within New Zealand and illustrates how niche adaptation may limit viral-host interactions.


Assuntos
Lagartos , Animais , Lagartos/virologia , Nova Zelândia , Vírus/isolamento & purificação , Vírus/genética , Filogenia
14.
Virus Evol ; 10(1): veae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379777

RESUMO

The lesser short-tailed bat (Mystacina tuberculata) and the long-tailed bat (Chalinolobus tuberculatus) are Aotearoa New Zealand's only native extant terrestrial mammals and are believed to have migrated from Australia. Long-tailed bats arrived in New Zealand an estimated two million years ago and are closely related to other Australian bat species. Lesser short-tailed bats, in contrast, are the only extant species within the Mystacinidae and are estimated to have been living in isolation in New Zealand for the past 16-18 million years. Throughout this period of isolation, lesser short-tailed bats have become one of the most terrestrial bats in the world. Through a metatranscriptomic analysis of guano samples from eight locations across New Zealand, we aimed to characterise the viromes of New Zealand's bats and determine whether viruses have jumped between these species over the past two million years. High viral richness was observed among long-tailed bats with viruses spanning seven different viral families. In contrast, no bat-specific viruses were identified in lesser short-tailed bats. Both bat species harboured an abundance of likely dietary- and environment-associated viruses. We also identified alphacoronaviruses in long-tailed bat guano that had previously been identified in lesser short-tailed bats, suggesting that these viruses had jumped the species barrier after long-tailed bats migrated to New Zealand. Of note, an alphacoronavirus species discovered here possessed a complete genome of only 22,416 nucleotides with entire deletions or truncations of several non-structural proteins, thereby representing what may be the shortest genome within the Coronaviridae identified to date. Overall, this study has revealed a diverse range of novel viruses harboured by New Zealand's only native terrestrial mammals, in turn expanding our understanding of bat viral dynamics and evolution globally.

15.
Mol Ecol ; 22(24): 6149-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118435

RESUMO

The endosymbiotic bacterium Wolbachia enhances its spread via vertical transmission by generating reproductive effects in its hosts, most notably cytoplasmic incompatibility (CI). Additionally, frequent interspecific horizontal transfer is evident from a lack of phylogenetic congruence between Wolbachia and its hosts. The mechanisms of this lateral transfer are largely unclear. To identify potential pathways of Wolbachia movements, we performed multilocus sequence typing of Wolbachia strains from bees (Anthophila). Using a host phylogeny and ecological data, we tested various models of horizontal endosymbiont transmission. In general, Wolbachia strains seem to be randomly distributed among bee hosts. Kleptoparasite-host associations among bees as well as other ecological links could not be supported as sole basis for the spread of Wolbachia. However, cophylogenetic analyses and divergence time estimations suggest that Wolbachia may persist within a host lineage over considerable timescales and that strictly vertical transmission and subsequent random loss of infections across lineages may have had a greater impact on Wolbachia strain distribution than previously estimated. Although general conclusions about Wolbachia movements among arthropod hosts cannot be made, we present a framework by which precise assumptions about shared evolutionary histories of Wolbachia and a host taxon can be modelled and tested.


Assuntos
Abelhas/microbiologia , Evolução Biológica , Transferência Genética Horizontal , Filogenia , Wolbachia/genética , Animais , Teorema de Bayes , Abelhas/genética , Modelos Genéticos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Simbiose/genética , Wolbachia/classificação
16.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425679

RESUMO

In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.

17.
Microbiol Spectr ; 11(4): e0081023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37265414

RESUMO

The Yangtze finless porpoise (YFP) (Neophocaena asiaeorientalis asiaeorientalis) is a critically endangered freshwater cetacean, with about 1,249 individuals thought to be left in the wild. However, viral entities and viral diseases of YFPs remain obscure. In this study, anal swabs for virome analysis were collected during the physical examination of YFPs in the Tian-E-Zhou Oxbow (TEO) ex situ reserve. A total of 19 eukaryotic viral species belonging to 9 families, including Papillomaviridae, Herpesviridae, Picornaviridae, Picobirnaviridae, Caliciviridae, Retroviridae, Parvoviridae, Virgaviridae, and Narnaviridae, and other unclassified viruses were identified based on metasequencing. Among these detected viruses, a novel herpesvirus (NaHV), two different kobuviruses (NaKV1-2), and six different papillomaviruses (NaPV1 to -6) were considered potential risks to YFPs and confirmed by PCR or reverse transcription-PCR (RT-PCR). Most YFPs sampled were found to harbor one or more kinds of detected viral genomes (52/58 [89.7%]). Surveillance results demonstrated that kobuvirus and herpesvirus displayed obvious age distribution and PVs showed significant gender difference in YFPs. According to species demarcation criteria in individual genera in Papillomaviridae, two novel species (referred to as Omikronpapillomavirus 2 and 3) and four novel isolates of PV were identified in YFPs. Further evolutionary analysis suggested that NaPVs would occupy the mucosal niche and that virus-host codivergence mixed with duplications and host-switching events drives the evolution of cetacean PVs. Divergence times of PVs in YFP and other cetacean reflect the incipient speciation of YFPs. In summary, our findings revealed the potential viral entities, their prevalence, and their evolutionary history in YFPs, which raises an important issue regarding effects of viral infection on the fitness of YFPs. IMPORTANCE The Yangtze finless porpoise (YFP) is the only cetacean species in freshwater following the functional extinction of the baiji (Lipotes vexillifer). Health management, disease treatment, and other special measures are important for maintaining the existing YFP populations, especially in in situ and ex situ reserves. The discovery of potential viral entities and their prevalence in YFPs raises an important issue regarding the effects of viral infection on the fitness of YFPs and may contribute to the conservation of YFPs. The evolutionary history of papillomaviruses in YFP and other cetaceans reflects the phylogeny of their hosts and supports the status of incipient species, opening a window to investigate the evolutionary adaptation of cetaceans to freshwater as well as their phylogeny to remedy the deficiency of fossil evidence.


Assuntos
Toninhas , Animais , Água Doce , Células Eucarióticas
18.
Viruses ; 15(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005925

RESUMO

Advances in viral discovery techniques have led to the identification of numerous novel viruses in human samples. However, the low prevalence of certain viruses in humans raises doubts about their association with our species. To ascertain the authenticity of a virus as a genuine human-infecting agent, it can be useful to investigate the diversification of its lineage within hominines, the group encompassing humans and African great apes. Building upon this rationale, we examined the case of the New Jersey polyomavirus (NJPyV; Alphapolyomavirus terdecihominis), which has only been detected in a single patient thus far. In this study, we obtained and analyzed sequences from closely related viruses infecting all African great ape species. We show that NJPyV nests within the diversity of these viruses and that its lineage placement is compatible with an ancient origin in humans, despite its apparent rarity in human populations.


Assuntos
Hominidae , Infecções por Polyomavirus , Polyomavirus , Animais , Humanos , Polyomavirus/genética , New Jersey/epidemiologia , Evolução Biológica , Infecções por Polyomavirus/epidemiologia , Filogenia
19.
Front Microbiol ; 13: 895741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633699

RESUMO

Deltacoronavirus (DCoV) is a genus of coronavirus (CoV) commonly found in avian and swine, but some DCoVs are capable of infecting humans, which causes the concern about interspecies transmission of DCoVs. Thus, monitoring the existence of DCoVs in animals near communities is of great importance for epidemic prevention. Black-headed gulls (Chroicocephalus ridibundus) are common migratory birds inhabiting in most urban and rural wetlands of Yunnan Province, China, which is a typical habitat for black-headed gulls to overwinter. Whether Yunnan black-headed gulls carry CoV has never been determined. In this study, we identified three strains of DCoVs in fecal samples of Yunnan black-headed gulls by reverse-transcriptional PCR and sequenced their whole genomes. Genomic analysis revealed that these three strains shared genomic identity of more than 99%, thus named DCoV HNU4-1, HNU4-2, and HNU4-3; their NSP12 showed high similarity of amino acid sequence to the homologs of falcon coronavirus UAE-HKU27 (HKU27), houbara coronavirus UAE-HKU28 (HKU28), and pigeon coronavirus UAE-HKU29 (HKU29). Since both HKU28 and HKU29 were found in Dubai, there might be cross-border transmission of these avian DCoVs through specific routes. Further coevolutionary analysis supported this speculation that HNU4 (or its ancestors) in black-headed gulls originated from HKU28 (or its homologous strain) in houbara, which was interspecies transmission between two different avian orders. In addition, interspecies transmission of DCoV, from houbara to falcon, pigeon and white-eye, from sparrow to common-magpie, and quail and mammal including porcine and Asian leopard cat, from munia to magpie-robin, was predicted. This is the first report of black-headed gull DCoV in Asia which was highly homolog to other avian DCoVs, and the very "active" host-switching events in DCoV were predicted, which provides important reference for the study of spread and transmission of DCoVs.

20.
Ecol Evol ; 12(7): e9071, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813907

RESUMO

Gut microbiota (GM) often exhibit variation between different host species and co-divergence with hosts' phylogeny. Identifying these patterns is a key for understanding the mechanisms that shaped symbiosis between GM and its hosts. Therefore, both GM-host species specificity and GM-host co-divergence have been investigated by numerous studies. However, most of them neglected a possibility that different groups of bacteria within GM can vary in the tightness of their association with the host. Consequently, unlike most of these studies, we aimed to directly address how the strength of GM-host species specificity and GM-host co-divergence vary across different GM clades. We decomposed GM communities of 52 passerine species (394 individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of host species specificity and correlation with host phylogeny separately for resulting BTUs. We found that most BTUs exhibited significant host-species specificity in their composition. Notably, BTUs exhibiting high host-species specificity comprised bacterial taxa known to impact host's physiology and immune system. However, BTUs rarely displayed significant co-divergence with host phylogeny, suggesting that passerine GM evolution is not shaped primarily through a shared evolutionary history between the host and its gut microbes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA