Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.731
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2314215121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261621

RESUMO

The competition-colonization (CC) trade-off is a well-studied coexistence mechanism for metacommunities. In this setting, it is believed that the coexistence of all species requires their traits to satisfy restrictive conditions limiting their similarity. To investigate whether diverse metacommunities can assemble in a CC trade-off model, we study their assembly from a probabilistic perspective. From a pool of species with parameters (corresponding to traits) sampled at random, we compute the probability that any number of species coexist and characterize the set of species that emerges through assembly. Remarkably, almost exactly half of the species in a large pool typically coexist, with no saturation as the size of the pool grows, and with little dependence on the underlying distribution of traits. Through a mix of analytical results and simulations, we show that this unlimited niche packing emerges as assembly actively moves communities toward overdispersed configurations in niche space. Our findings also apply to a realistic assembly scenario where species invade one at a time from a fixed regional pool. When diversity arises de novo in the metacommunity, richness still grows without bound, but more slowly. Together, our results suggest that the CC trade-off can support the robust emergence of diverse communities, even when coexistence of the full species pool is exceedingly unlikely.


Assuntos
Bandagens , Fenótipo , Probabilidade
2.
Proc Natl Acad Sci U S A ; 120(37): e2217144120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669363

RESUMO

Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches-which combine phylogenetic relationships between species with community ecology-have the potential to disentangle such forces but are often hard to connect with quantitative predictions from theoretical models. On the other hand, macroecology, which focuses on statistical patterns of abundance and diversity, provides natural connections with theoretical models but often neglects interspecific correlations and interactions. Here, we propose a unified framework combining both such approaches to analyze microbial communities. In particular, by using both cross-sectional and longitudinal metagenomic data for species abundances, we reveal the existence of an empirical macroecological law establishing that correlations in species-abundance fluctuations across communities decay from positive to null values as a function of phylogenetic dissimilarity in a consistent manner across ecologically distinct microbiomes. We formulate three variants of a mechanistic model-each relying on alternative ecological forces-that lead to radically different predictions. From these analyses, we conclude that the empirically observed macroecological pattern can be quantitatively explained as a result of shared population-independent fluctuating resources, i.e., environmental filtering and not as a consequence of, e.g., species competition. Finally, we show that the macroecological law is also valid for temporal data of a single community and that the properties of delayed temporal correlations can be reproduced as well by the model with environmental filtering.


Assuntos
Metagenoma , Microbiota , Filogenia , Estudos Transversais , Metagenômica
3.
Proc Natl Acad Sci U S A ; 120(7): e2218044120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749724

RESUMO

The massive release of captive-bred native species ("intentional release") is a pervasive method to enhance wild populations of commercial and recreational species. However, such external inputs may disrupt the sensitive species interactions that allow competing species to coexist, potentially compromising long-term community stability. Here, we use theory and long-term data of stream fish communities to show that intentional release destabilizes community dynamics with limited demographic benefit to the enhanced species. Our theory predicted that intentional release intensifies interspecific competition, facilitating the competitive exclusion of unenhanced species that otherwise stably coexist. In parallel, the excessive input of captive-bred individuals suppressed the natural recruitment of the enhanced species via intensified within-species competition. Consequently, the ecological community with the intentional release is predicted to show reduced community density with unstable temporal dynamics. Consistent with this prediction, stream fish communities showed greater temporal fluctuations and fewer taxonomic richness in rivers with the intensive release of hatchery salmon-a major fishery resource worldwide. Our findings alarm that the current overreliance on intentional release may accelerate global biodiversity loss with undesired consequences for the provisioning of ecosystem services.


Assuntos
Biodiversidade , Ecossistema , Animais , Pesqueiros , Salmão , Rios
4.
Proc Natl Acad Sci U S A ; 120(1): e2211482119, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574696

RESUMO

Balancing the competing, and often conflicting, needs of people and wildlife in shared landscapes is a major challenge for conservation science and policy worldwide. Connectivity is critical for wildlife persistence, but dispersing animals may come into conflict with people, leading to severe costs for humans and animals and impeding connectivity. Thus, conflict mitigation and connectivity present an apparent dilemma for conservation. We present a framework to address this dilemma and disentangle the effects of barriers to animal movement and conflict-induced mortality of dispersers on connectivity. We extend random-walk theory to map the connectivity-conflict interface, or areas where frequent animal movement may lead to conflict and conflict in turn impedes connectivity. We illustrate this framework with the endangered Asian elephant Elephas maximus, a species that frequently disperses out of protected areas and comes into conflict with humans. We mapped expected movement across a human-dominated landscape over the short- and long-term, accounting for conflict mortality. Natural and conflict-induced mortality together reduced expected movement and connectivity among populations. Based on model validation, our conflict predictions that explicitly captured animal movement better explained observed conflict than a model that considered distribution alone. Our work highlights the interaction between connectivity and conflict and enables identification of location-specific conflict mitigation strategies that minimize losses to people, while ensuring critical wildlife movement between habitats. By predicting where animal movement and humans collide, we provide a basis to plan for broad-scale conservation and the mutual well-being of wildlife and people in shared landscapes.


Assuntos
Conservação dos Recursos Naturais , Elefantes , Animais , Humanos , Ecossistema , Animais Selvagens , Movimento
5.
Proc Natl Acad Sci U S A ; 120(25): e2216002120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37314933

RESUMO

We present two binary lipid-sterol membrane systems that exhibit fluid-fluid coexistence. Partial phase diagrams of binary mixtures of dimyristoylphosphatidylcholine with 25-hydroxyxholesterol and 27-hydroxycholesterol, determined from small-angle X-ray scattering and fluorescence microscopy studies, show closed-loop fluid-fluid immiscibility gaps, with the appearance of a single fluid phase both at higher and lower temperatures. Computer simulations suggest that this unusual phase behavior results from the ability of these oxysterol molecules to take different orientations in the membrane depending on the temperature.

6.
Proc Natl Acad Sci U S A ; 120(18): e2219900120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094152

RESUMO

Nonequilibrium phase transitions are routinely observed in both natural and synthetic systems. The ubiquity of these transitions highlights the conspicuous absence of a general theory of phase coexistence that is broadly applicable to both nonequilibrium and equilibrium systems. Here, we present a general mechanical theory for phase separation rooted in ideas explored nearly a half-century ago in the study of inhomogeneous fluids. The core idea is that the mechanical forces within the interface separating two coexisting phases uniquely determine coexistence criteria, regardless of whether a system is in equilibrium or not. We demonstrate the power and utility of this theory by applying it to active Brownian particles, predicting a quantitative phase diagram for motility-induced phase separation in both two and three dimensions. This formulation additionally allows for the prediction of novel interfacial phenomena, such as an increasing interface width while moving deeper into the two-phase region, a uniquely nonequilibrium effect confirmed by computer simulations. The self-consistent determination of bulk phase behavior and interfacial phenomena offered by this mechanical perspective provide a concrete path forward toward a general theory for nonequilibrium phase transitions.

7.
Proc Natl Acad Sci U S A ; 120(38): e2303765120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695901

RESUMO

This work reports that synchronization of Mott material-based nanoscale coupled spiking oscillators can be drastically different from that in conventional harmonic oscillators. We investigated the synchronization of spiking nanooscillators mediated by thermal interactions due to the close physical proximity of the devices. Controlling the driving voltage enables in-phase 1:1 and 2:1 integer synchronization modes between neighboring oscillators. Transition between these two integer modes occurs through an unusual stochastic synchronization regime instead of the loss of spiking coherence. In the stochastic synchronization regime, random length spiking sequences belonging to the 1:1 and 2:1 integer modes are intermixed. The occurrence of this stochasticity is an important factor that must be taken into account in the design of large-scale spiking networks for hardware-level implementation of novel computational paradigms such as neuromorphic and stochastic computing.

8.
Proc Natl Acad Sci U S A ; 120(15): e2217372120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014861

RESUMO

Historically, those ecological communities thought to be dominated by competitive interactions among their component species have been assumed to exhibit transitive competition, that is, a hierarchy of competitive strength from most dominant to most submissive. A surge of recent literature takes issue with this assumption and notes that some species in some communities are intransitive, where a rock/scissors/paper arrangement characterizes some components of some communities. We here propose a merging of these two ideas, wherein an intransitive subgroup of species connects with a distinct subcomponent that is organized hierarchically, such that the expected eventual takeover by the dominant competitor in the hierarchy is thwarted, and the entire community can be sustained. This means that the combination of transitive and intransitive structures can maintain many species even when competition is strong. Here, we develop this theoretical framework using a simple variant on the Lotka-Volterra competition equations to illustrate the process. We also present data for the ant community in a coffee agroecosystem in Puerto Rico, that appears to be organized in this way. A detailed study on one typical coffee farm illustrates an intransitive loop of three species that seems to maintain a distinct competitive community of at least 13 additional species.

9.
Mol Syst Biol ; 20(9): 997-1005, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38961275

RESUMO

Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.


Assuntos
Evolução Biológica , Escherichia coli , Microbiota , Escherichia coli/genética , Consórcios Microbianos , Ecossistema
10.
Proc Natl Acad Sci U S A ; 119(43): e2205063119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252042

RESUMO

A central assumption in most ecological models is that the interactions in a community operate only between pairs of species. However, two species may interactively affect the growth of a focal species. Although interactions among three or more species, called higher-order interactions, have the potential to modify our theoretical understanding of coexistence, ecologists lack clear expectations for how these interactions shape community structure. Here we analytically predict and numerically confirm how the variability and strength of higher-order interactions affect species coexistence. We found that as higher-order interaction strengths became more variable across species, fewer species could coexist, echoing the behavior of pairwise models. If interspecific higher-order interactions became too harmful relative to self-regulation, coexistence in diverse communities was destabilized, but coexistence was also lost when these interactions were too weak and mutualistic higher-order effects became prevalent. This behavior depended on the functional form of the interactions as the destabilizing effects of the mutualistic higher-order interactions were ameliorated when their strength saturated with species' densities. Last, we showed that more species-rich communities structured by higher-order interactions lose species more readily than their species-poor counterparts, generalizing classic results for community stability. Our work provides needed theoretical expectations for how higher-order interactions impact species coexistence in diverse communities.


Assuntos
Ecossistema , Modelos Teóricos , Modelos Biológicos
11.
Proc Natl Acad Sci U S A ; 119(37): e2201503119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067285

RESUMO

Spatial dynamics have long been recognized as an important driver of biodiversity. However, our understanding of species' coexistence under realistic landscape configurations has been limited by lack of adequate analytical tools. To fill this gap, we develop a spatially explicit metacommunity model of multiple competing species and derive analytical criteria for their coexistence in fragmented heterogeneous landscapes. Specifically, we propose measures of niche and fitness differences for metacommunities, which clarify how spatial dynamics and habitat configuration interact with local competition to determine coexistence of species. We parameterize our model with a Bayesian approach using a 36-y time-series dataset of three Daphnia species in a rockpool metacommunity covering >500 patches. Our results illustrate the emergence of interspecific variation in extinction and recolonization processes, including their dependencies on habitat size and environmental temperature. We find that such interspecific variation contributes to the coexistence of Daphnia species by reducing fitness differences and increasing niche differences. Additionally, our parameterized model allows separating the effects of habitat destruction and temperature change on species extinction. By integrating coexistence theory and metacommunity theory, our study provides platforms to increase our understanding of species' coexistence in fragmented heterogeneous landscapes and the response of biodiversity to environmental changes.


Assuntos
Biodiversidade , Extinção Biológica , Modelos Biológicos , Teorema de Bayes , Dinâmica Populacional
12.
Proc Natl Acad Sci U S A ; 119(50): e2203900119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36475944

RESUMO

Plant cell walls are versatile materials that can adopt a wide range of mechanical properties through controlled deposition of cellulose fibrils. Wall integrity requires a sufficiently homogeneous fibril distribution to cope effectively with wall stresses. Additionally, specific conditions, such as the negative pressure in water transporting xylem vessels, may require more complex wall patterns, e.g., bands in protoxylem. The orientation and patterning of cellulose fibrils are guided by dynamic cortical microtubules. New microtubules are predominantly nucleated from parent microtubules causing positive feedback on local microtubule density with the potential to yield highly inhomogeneous patterns. Inhomogeneity indeed appears in all current cortical array simulations that include microtubule-based nucleation, suggesting that plant cells must possess an as-yet unknown balancing mechanism to prevent it. Here, in a combined simulation and experimental approach, we show that a limited local recruitment of nucleation complexes to microtubules can counter the positive feedback, whereas local tubulin depletion cannot. We observe that nucleation complexes preferentially appear at the plasma membrane near microtubules. By incorporating our experimental findings in stochastic simulations, we find that the spatial behavior of nucleation complexes delicately balances the positive feedback, such that differences in local microtubule dynamics-as in developing protoxylem-can quickly turn a homogeneous array into a banded one. Our results provide insight into how the plant cytoskeleton has evolved to meet diverse mechanical requirements and greatly increase the predictive power of computational cell biology studies.


Assuntos
Biologia Computacional , Microtúbulos
13.
Proc Natl Acad Sci U S A ; 119(22): e2122088119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605114

RESUMO

Soil microorganisms play a major role in shaping plant diversity, not only through their direct effects as pathogens, mutualists, and decomposers, but also by altering the outcome of plant interactions. In particular, previous research has shown that the soil community often generates frequency-dependent feedback loops among plants that can either stabilize or destabilize species interactions and thereby promote or hinder species coexistence. However, recent insights from modern coexistence theory have shown that microbial effects on plant coexistence depend not only on these stabilizing or destabilizing effects, but also on the degree to which they generate competitive fitness differences. While many previous experiments have generated the data necessary for evaluating microbially mediated fitness differences, these effects have rarely been quantified in the literature. Here, we present a meta-analysis of data from 50 studies, which we used to quantify the microbially mediated (de)stabilization and fitness differences derived from a classic plant-soil feedback model. We found that across 518 plant species pairs, soil microbes generated both stabilization (or destabilization) and fitness differences, but also that the microbially mediated fitness differences dominated. As a consequence, if plants are otherwise equivalent competitors, the balance of soil microbe­generated (de)stabilization and fitness differences drives species exclusion much more frequently than coexistence or priority effects. Our work shows that microbially mediated fitness differences are an important but overlooked effect of soil microbes on plant coexistence. This finding paves the way for a more complete understanding of the processes that maintain plant biodiversity.


Assuntos
Biodiversidade , Aptidão Genética , Plantas , Microbiologia do Solo , Ecologia , Solo
14.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947618

RESUMO

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Assuntos
Neuropeptídeos , Córtex Pré-Frontal , Receptores de Neuropeptídeos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(35): e2204400119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994662

RESUMO

Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families-grasses and legumes-accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.


Assuntos
Dieta , Pradaria , Herbivoria , Mamíferos , Plantas , África , Animais , Comportamento Competitivo , Código de Barras de DNA Taxonômico , Dieta/estatística & dados numéricos , Dieta/veterinária , Fabaceae/classificação , Fabaceae/genética , Fezes , Mamíferos/classificação , Mamíferos/fisiologia , Plantas/classificação , Plantas/genética , Poaceae/classificação , Poaceae/genética , Chuva
16.
BMC Biol ; 22(1): 148, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965531

RESUMO

BACKGROUND: Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation. RESULTS: To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment. CONCLUSIONS: The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.


Assuntos
Transferência Genética Horizontal , Microbiota , Microbiota/genética , Biodiversidade , Simbiose/genética , Modelos Teóricos , Modelos Biológicos
17.
Nano Lett ; 24(7): 2408-2414, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329291

RESUMO

Two-dimensional (2D) heterostructures with ferromagnetism and ferroelectricity provide a promising avenue to miniaturize the device size, increase computational power, and reduce energy consumption. However, the direct synthesis of such eye-catching heterostructures has yet to be realized up to now. Here, we design a two-step chemical vapor deposition strategy to growth of Cr2S3/WS2 vertical heterostructures with atomically sharp and clean interfaces on sapphire. The interlayer charge transfer and periodic moiré superlattice result in the emergence of room-temperature ferroelectricity in atomically thin Cr2S3/WS2 vertical heterostructures. In parallel, long-range ferromagnetic order is discovered in 2D Cr2S3 via the magneto-optical Kerr effect technique with the Curie temperature approaching 170 K. The charge distribution variation induced by the moiré superlattice changes the ferromagnetic coupling strength and enhances the Curie temperature. The coexistence of ferroelectricity and ferromagnetism in 2D Cr2S3/WS2 vertical heterostructures provides a cornerstone for the further design of logic-in-memory devices to build new computing architectures.

18.
Ecol Lett ; 27(1): e14334, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957830

RESUMO

Species coexistence attracts wide interest in ecology. Modern coexistence theory (MCT) identifies coexistence mechanisms, one of which, storage effects, hinges on relationships between fluctuations in environmental and competitive pressures. However, such relationships are typically measured using covariance, which does not account for the possibility that environment and competition may be more related to each other when they are strong than when weak, or vice versa. Recent work showed that such 'asymmetric tail associations' (ATAs) are common between ecological variables, and are important for extinction risk, ecosystem stability, and other phenomena. We extend MCT, decomposing storage effects to show the influence of ATAs. Analysis of a simple model and an empirical example using diatoms illustrate that ATA influences can be comparable in magnitude to other mechanisms of coexistence and that ATAs can make the difference between species coexistence and competitive exclusion. ATA influences may be an important new mechanism of coexistence.


Assuntos
Ecossistema , Modelos Biológicos
19.
Ecol Lett ; 27(4): e14426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603592

RESUMO

While natural communities can contain hundreds of species, modern coexistence theory focuses primarily on species pairs. Alternatively, the structural stability approach considers the feasibility of equilibria, gaining scalability to larger communities but sacrificing information about dynamic stability. Three-species competitive communities are a bridge to more-diverse communities. They display novel phenomena while remaining amenable to mathematical analysis, but remain incompletely understood. Here, we combine these approaches to identify the key quantities that determine three-species competition outcomes. We show that pairwise niche overlap and fitness differences are insufficient to completely characterize competitive outcomes, which requires a strictly triplet-wise quantity: cyclic asymmetry, which underlies intransitivity. Low pairwise niche overlap stabilizes the triplet, while high fitness differences promote competitive exclusion. The effect of cyclic asymmetry on stability is complex and depends on pairwise niche overlap. In summary, we elucidate how pairwise niche overlap, fitness differences and cyclic asymmetry determine three-species competition outcomes.


Assuntos
Ecossistema , Modelos Biológicos
20.
Ecol Lett ; 27(6): e14458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877741

RESUMO

Most ecological models are based on the assumption that species interact in pairs. Diverse communities, however, can have higher-order interactions, in which two or more species jointly impact the growth of a third species. A pitfall of the common pairwise approach is that it misses the higher-order interactions potentially responsible for maintaining natural diversity. Here, we explore the stability properties of systems where higher-order interactions guarantee that a specified set of abundances is a feasible equilibrium of the dynamics. Even these higher-order interactions which lead to equilibria do not necessarily produce stable coexistence. Instead, these systems are more likely to be stable when the pairwise interactions are weak or facilitative. Correlations between the pairwise and higher-order interactions, however, do permit robust coexistence even in diverse systems. Our work not only reveals the challenges in generating stable coexistence through higher-order interactions but also uncovers interaction patterns that can enable diversity.


Assuntos
Modelos Biológicos , Biodiversidade , Ecossistema , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA