Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475076

RESUMO

The proposed novel algorithm named decision-making algorithm with geographic mobility (DMAGM) includes detailed analysis of decision-making for cognitive radio (CR) that considers a multivariable algorithm with geographic mobility (GM). Scarce research work considers the analysis of GM in depth, even though it plays a crucial role to improve communication performance. The DMAGM considerably reduces latency in order to accurately determine the best communication channels and includes GM analysis, which is not addressed in other algorithms found in the literature. The DMAGM was evaluated and validated by simulating a cognitive radio network that comprises a base station (BS), primary users (PUs), and CRs considering random arrivals and disappearance of mobile devices. The proposed algorithm exhibits better performance, through the reduction in latency and computational complexity, than other algorithms used for comparison using 200 channel tests per simulation. The DMAGM significantly reduces the decision-making process from 12.77% to 94.27% compared with ATDDiM, FAHP, AHP, and Dijkstra algorithms in terms of latency reduction. An improved version of the DMAGM is also proposed where feedback of the output is incorporated. This version is named feedback-decision-making algorithm with geographic mobility (FDMAGM), and it shows that a feedback system has the advantage of being able to continually adjust and adapt based on the feedback received. In addition, the feedback version helps to identify and correct problems, which can be beneficial in situations where the quality of communication is critical. Despite the fact that the FDMAGM may take longer than the DMAGM to calculate the best communication channel, constant feedback improves efficiency and effectiveness over time. Both the DMAGM and the FDMAGM improve performance in practical scenarios, the former in terms of latency and the latter in terms of accuracy and stability.

2.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124005

RESUMO

Traditional heterogeneous networks (HetNets) are constrained by their hardware design and configuration. These HetNets have a limited ability to adapt to variations in network dynamics. Software-defined radio technology has the potential to address this adaptability issue. In this paper, we introduce a software-defined radio (SDR)-based long-term evolution licensed assisted access (LTE-LAA) architecture for next-generation communication networks. We show that with proper design and tuning of the proposed architecture, high-level adaptability in HetNets becomes feasible with a higher throughput and lower power consumption. Firstly, maximizing the throughput and minimizing power consumption are formulated as a constrained optimization problem. Then, the obtained solution, alongside a heuristic solution, is compared against the solutions to existing approaches, showing our proposed strategy is drastically superior in terms of both power efficiency and system throughput. This study is then concluded by employing artificial intelligence techniques in multi-objective optimization, namely random forest regression, particle swarm, and genetic algorithms, to balance out the trade-offs between maximizing the throughput and power efficiency and minimizing energy consumption. These investigations demonstrate the potential of employing the proposed LTE-LAA architecture in addressing the requirements of next-generation HetNets in terms of power, throughput, and green scalability.

3.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931496

RESUMO

This paper proposes a cognitive radio network (CRN)-based hybrid wideband precoding for maximizing spectral efficiency in millimeter-wave relay-assisted multi-user (MU) multiple-input multiple-output (MIMO) systems. The underlying problem is NP-hard and non-convex due to the joint optimization of hybrid processing components and the constant amplitude constraint imposed by the analog beamformer in the radio frequency (RF) domain. Furthermore, the analog beamforming solution common to all sub-carriers adds another layer of design complexity. Two hybrid beamforming architectures, i.e., mixed and fully connected ones, are taken into account to tackle this problem, considering the decode-and-forward (DF) relay node. To reduce the complexity of the original optimization problem, an attempt is made to decompose it into sub-problems. Leveraging this, each sub-problem is addressed by following a decoupled design methodology. The phase-only beamforming solution is derived to maximize the sum of spectral efficiency, while digital baseband processing components are designed to keep interference within a predefined limit. Computer simulations are conducted by changing system parameters under different accuracy levels of channel-state information (CSI), and the obtained results demonstrate the effectiveness of the proposed technique. Additionally, the mixed structure shows better energy efficiency performance compared to its counterparts and outperforms benchmarks.

4.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123916

RESUMO

In this paper, we propose a novel system integrating reconfigurable intelligent surfaces (RISs) with cognitive radio (CR) technology, presenting a forward-looking solution aligned with the evolving standards of 6G and beyond networks. The proposed RIS-assisted CR networks operate with a base station (BS) transmitting signals to two users, the primary user (PU) and secondary user (SU), through direct and reflected signal paths, respectively. Our mathematical analysis focuses on deriving expressions for SU in the RIS-assisted CR system, validated through Monte Carlo simulations. The investigation covers diverse aspects, including the impact of the signal-to-noise ratio (SNR), power allocations, the number of reflected surfaces, and blocklength variations. The results provide nuanced insights into RIS-assisted CR system performance, highlighting its sensitivity to factors like the number of reflectors, fading severity, and correlation coefficient. Careful parameter selection, such as optimizing the configuration of reflectors, is shown to prevent a complete outage, showcasing the system's robustness. Additionally, the work suggests that the optimization of reflectors configuration can significantly enhance overall system performance, and RIS-assisted CR systems outperform reference schemes. This work contributes a thorough analysis of the proposed system, offering valuable insights for efficient performance evaluation and parameter optimization in RIS-assisted CR networks.

5.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177483

RESUMO

Cognitive radio (CR) is a candidate for opportunistic spectrum implementation in wireless communications, allowing secondary users (SUs) to share the spectrum with primary users (PUs). In this paper, a robust adaptive target power allocation strategy for cognitive nonorthogonal multiple access (NOMA) networks is proposed, which involves the maximum transmission power of each SU and interference power threshold under PU constraints. By introducing the signal-to-interference-plus-noise ratio (SINR) adjustment factor, the strategy enables single-station communication to achieve energy efficiency (EE) or high throughput (HT), thus making the target function more flexible. In the same communication scenario, different cognitive users can choose different communication targets that meet their needs. Different QoS can be selected by the same cognitive user at different times. In the case of imperfect channel state information (CSI), semi-infinite (SI) constraints with bounded uncertainty sets are transformed into an optimization problem under the worst case, which is solved by the dual decomposition method. Simulation results show that this strategy has good adaptive selectivity and robustness.

6.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447974

RESUMO

This paper provides an overview of cognitive radio technology and its applications in the field of civil aviation. Cognitive radio technology is a relatively new and emerging field that allows for dynamic spectrum access and efficient use of spectrum resources. In the context of civil aviation, cognitive radio technology has the potential to enable more efficient use of the limited radio spectrum available for communication and navigation purposes. This paper examines the current state of cognitive radio technology, including ongoing research and development efforts, regulatory issues, and potential challenges to widespread adoption. The potential applications of cognitive radio technology in civil aviation are also explored, including improved spectrum utilization, increased safety and security, and enhanced situational awareness. Finally, the paper concludes with a discussion of future research directions and the potential impact of cognitive radio technology on the future of civil aviation. It is hoped that this paper will serve as a useful resource for researchers, engineers, and policy makers interested in the emerging field of cognitive radio technology and its potential applications in the field of civil aviation.


Assuntos
Aviação , Conscientização , Comunicação , Engenharia , Tecnologia
7.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420570

RESUMO

Recently, the Gini index detector (GID) has been proposed as an alternative for data-fusion cooperative spectrum sensing, being mostly suitable for channels with line-of-sight or dominant multi-path components. The GID is quite robust against time-varying noise and signal powers, has the constant false-alarm rate property, can outperform many the state-of-the-art robust detectors, and is one of the simplest detectors developed so far. The modified GID (mGID) is devised in this article. It inherits the attractive attributes of the GID, yet with a computational cost far below the GID. Specifically, the time complexity of the mGID obeys approximately the same run-time growth rate of the GID, but has a constant factor approximately 23.4 times smaller. Equivalently, the mGID takes approximately 4% of the computation time spent to calculate the GID test statistic, which brings a huge reduction in the latency of the spectrum sensing process. Moreover, this latency reduction comes with no performance loss with respect to the GID.

8.
Sensors (Basel) ; 23(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631770

RESUMO

The concept of cognitive radio (CR) as a tool to optimize the obstacle of spectral coexistence has promoted the development of shared satellite-terrestrial wireless networks. Nevertheless, in some applications like Earth Exploration Satellite Services, which demand high spectral efficiency (bps/Hz) for downlink transmissions, spectral coexistence amidst interferences from cellular Base Stations is still challenging. Our research aims to mitigate these interferences on low-orbit satellite downlinks carrying imaging data received from a ground station. In order to fulfill this, we present cognitive radio approaches to enhance spectrum exploitation and introduce the adaptive modulation and coding (MODCOD) technique to increase RF power and spectral efficiencies. Therefore, we propose a combined methodology using CR and adaptive MODCOD (ACM) techniques. Afterwards, we applied the solution by monitoring the signal to interference plus noise ratio and the MODCOD strategy. Finally, we provide a real in situ case study at the Cuiabá ground station located in Brazil's central area, which receives images from an Earth observation satellite (EOS). In addition to demonstrating the strategy effectiveness in this scenario, we conducted a bench test emulating the interfering wireless communication system. In this sense, we demonstrated the proposed approach, successfully mitigating the harmful effects on the received EOS images.

9.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687912

RESUMO

The rapid technological advancements in the current modern world bring the attention of researchers to fast and real-time healthcare and monitoring systems. Smart healthcare is one of the best choices for this purpose, in which different on-body and off-body sensors and devices monitor and share patient data with healthcare personnel and hospitals for quick and real-time decisions about patients' health. Cognitive radio (CR) can be very useful for effective and smart healthcare systems to send and receive patient's health data by exploiting the primary user's (PU) spectrum. In this paper, tree-based algorithms (TBAs) of machine learning (ML) are investigated to evaluate spectrum sensing in CR-based smart healthcare systems. The required data sets for TBAs are created based on the probability of detection (Pd) and probability of false alarm (Pf). These data sets are used to train and test the system by using fine tree, coarse tree, ensemble boosted tree, medium tree, ensemble bagged tree, ensemble RUSBoosted tree, and optimizable tree. Training and testing accuracies of all TBAs are calculated for both simulated and theoretical data sets. The comparison of training and testing accuracies of all classifiers is presented for the different numbers of received signal samples. Results depict that optimizable tree gives the best accuracy results to evaluate the spectrum sensing with minimum classification error (MCE).


Assuntos
Algoritmos , Pessoal de Saúde , Humanos , Hospitais , Aprendizado de Máquina , Probabilidade
10.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430511

RESUMO

Sub-GHz communication provides long-range coverage with low power consumption and reduced deployment cost. LoRa (Long-Range) has emerged, among existing LPWAN (Low Power Wide Area Networks) technologies, as a promising physical layer alternative to provide ubiquitous connectivity to outdoor IoT devices. LoRa modulation technology supports adapting transmissions based on parameters such as carrier frequency, channel bandwidth, spreading factor, and code rate. In this paper, we propose SlidingChange, a novel cognitive mechanism to support the dynamic analysis and adjustment of LoRa network performance parameters. The proposed mechanism uses a sliding window to smooth out short-term variations and reduce unnecessary network re-configurations. To validate our proposal, we conducted an experimental study to evaluate the performance concerning the Signal-to-Noise Ratio (SNR) parameter of our SlidingChange against InstantChange, an intuitive mechanism that considers immediate performance measurements (parameters) for re-configuring the network. The SlidingChange is compared with LR-ADR too, a state-of-the-art-related technique based on simple linear regression. The experimental results obtained from a testbed scenario demonstrated that the InstanChange mechanism improved the SNR by 4.6%. When using the SlidingChange mechanism, the SNR was around 37%, while the network reconfiguration rate was reduced by approximately 16%.

11.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430696

RESUMO

Since the CubeSats have become inherently used for the Internet of space things (IoST) applications, the limited spectral band at the ultra-high frequency (UHF) and very high frequency should be efficiently utilized to be sufficient for different applications of CubeSats. Therefore, cognitive radio (CR) has been used as an enabling technology for efficient, dynamic, and flexible spectrum utilization. So, this paper proposes a low-profile antenna for cognitive radio in IoST CubeSat applications at the UHF band. The proposed antenna comprises a circularly polarized wideband (WB) semi-hexagonal slot and two narrowband (NB) frequency reconfigurable loop slots integrated into a single-layer substrate. The semi-hexagonal-shaped slot antenna is excited by two orthogonal +/-45° tapered feed lines and loaded by a capacitor in order to achieve left/right-handed circular polarization in wide bandwidth from 0.57 GHz to 0.95 GHz. In addition, two NB frequency reconfigurable slot loop-based antennas are tuned over a wide frequency band from 0.6 GHz to 1.05 GH. The antenna tuning is achieved based on a varactor diode integrated into the slot loop antenna. The two NB antennas are designed as meander loops to miniaturize the physical length and point in different directions to achieve pattern diversity. The antenna design is fabricated on FR-4 substrate, and measured results have verified the simulated results.

12.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765848

RESUMO

The aim of this systematic review was to identify the correlations between spectrum sensing, clustering algorithms, and energy-harvesting technology for cognitive-radio-based internet of things (IoT) networks in terms of deep-learning-based, nonorthogonal, multiple-access techniques. The search results and screening procedures were configured with the use of a web-based Shiny app in the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow design. AMSTAR, DistillerSR, Eppi-Reviewer, PICO Portal, Rayyan, and ROBIS were the review software systems harnessed for screening and quality assessment, while bibliometric mapping (dimensions) and layout algorithms (VOSviewer) configured data visualization and analysis. Cognitive radio is pivotal in the utilization of an adequate radio spectrum source, with spectrum sensing optimizing cognitive radio network operations, opportunistic spectrum access and sensing able to boost the efficiency of cognitive radio networks, and cooperative spectrum sharing together with simultaneous wireless information and power transfer able increase spectrum and energy efficiency in 6G wireless communication networks and across IoT devices for efficient data exchange.

13.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765872

RESUMO

The development and growth of Wireless Sensor Networks (WSNs) is significantly propelled by advances in Radio Frequency (RF) and Visible Light Communication (VLC) technologies. This paper endeavors to present a comprehensive review of the state-of-the-art in cognitive hybrid RF-VLC systems for WSNs, emphasizing the critical task of seamlessly integrating Cognitive Radio Sensor Networks (CRSNs) and VLC technologies. The central challenge addressed is the intricate landscape of this integration, characterized by notable trade-offs between performance and complexity, which escalate with the addition of more devices and increased data rates. This scenario necessitates the development of advanced cognitive radio strategies, potentially facilitated by Machine Learning (ML) and Deep Learning (DL) approaches, albeit introducing new complexities such as the necessity for pre-training with extensive datasets. The review scrutinizes the fundamental aspects of CRSNs and VLC, spotlighting key areas like Energy Efficient Resource Allocation, Industrial Scenarios, and Energy Harvesting, and explores the synergistic amalgamation of these technologies as a promising pathway for enhanced spectrum utilization and network performance. By delving into the integration of cognitive radio technology with visible light, this study furnishes valuable insights into the potential for innovative applications in wireless communication, presenting a balanced overview of the current advancements and prospective avenues in the field of cognitive hybrid RF/VLC systems.

14.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850606

RESUMO

A cognitive radio network (CRN) is an intelligent network that can detect unoccupied spectrum space without interfering with the primary user (PU). Spectrum scarcity arises due to the stable channel allocation, which the CRN handles. Spectrum handoff management is a critical problem that must be addressed in the CRN to ensure indefinite connection and profitable use of unallocated spectrum space for secondary users (SUs). Spectrum handoff (SHO) has some disadvantages, i.e., communication delay and power consumption. To overcome these drawbacks, a reduction in handoff should be a priority. This study proposes the use of dynamic spectrum access (DSA) to check for available channels for SU during handoff using a metaheuristic algorithm depending on machine learning. The simulation results show that the proposed "support vector machine-based red deer algorithm" (SVM-RDA) is resilient and has low complexity. The suggested algorithm's experimental setup offers several handoffs, unsuccessful handoffs, handoff delay, throughput, signal-to-noise ratio (SNR), SU bandwidth, and total spectrum bandwidth. This study provides an improved system performance during SHO. The inferred technique anticipates handoff delay and minimizes the handoff numbers. The results show that the recommended method is better at making predictions with fewer handoffs compared to the other three.

15.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850612

RESUMO

Cognitive radio (CR) has emerged as one of the most investigated techniques in wireless networks. Research is ongoing in terms of this technology and its potential use. This technology relies on making full use of the unused spectrum to solve the problem of the spectrum shortage in wireless networks based on the excessive demand for spectrum use. While the wireless network technology node's range of applications in various sectors may have security drawbacks and issues leading to deteriorating the network, combining it with CR technology might enhance the network performance and improve its security. In order to enhance the performance of the wireless sensor networks (WSNs), a lightweight authentication medium access control (MAC) protocol for CR-WSNs that is highly compatible with current WSNs is proposed. Burrows-Abadi-Needham (BAN) logic is used to prove that the proposed protocol achieves secure and mutual authentication. The automated verification of internet security protocols and applications (AVISPA) simulation is used to simulate the system security of the proposed protocol and to provide formal verification. The result clearly shows that the proposed protocol is SAFE under the on-the-fly model-checker (OFMC) backend, which means the proposed protocol is immune to passive and active attacks such as man-in-the-middle (MITM) attacks and replay attacks. The performance of the proposed protocol is evaluated and compared with related protocols in terms of the computational cost, which is 0.01184 s. The proposed protocol provides higher security, which makes it more suitable for the CR-WSN environment and ensures its resistance against different types of attacks.

16.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679601

RESUMO

The paper studies the secrecy communication threatened by a single eavesdropper in Energy Harvesting (EH)-based cognitive radio networks, where both the Secure User (SU) and the jammer harvest, store, and utilize RF energy from the Primary Transmitter (PT). Our main goal is to optimize the time slots for energy harvesting and wireless communication for both the secure user as well as the jammer to maximize the long-term performance of secrecy communication. A multi-agent Deep Reinforcement Learning (DRL) method is proposed for solving the optimization of resource allocation and performance. Specifically, each sub-channel from the Secure Transmitter (ST) to the Secure Receiver (SR) link, along with the jammer to the eavesdropper link, is regarded as an agent, which is responsible for exploring optimal power allocation strategy while a time allocation network is established to obtain optimal EH time allocation strategy. Every agent dynamically interacts with the wireless communication environment. Simulation results demonstrate that the proposed DRL-based resource allocation method outperforms the existing schemes in terms of secrecy rate, convergence speed, and the average number of transition steps.


Assuntos
Comunicação , Alocação de Recursos , Fenômenos Físicos , Simulação por Computador , Cognição
17.
Sensors (Basel) ; 23(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36772366

RESUMO

Cognitive radio networks are vulnerable to numerous threats during spectrum sensing. Different approaches can be used to lessen these attacks as the malicious users degrade the performance of the network. The cutting-edge technologies of machine learning and deep learning step into cognitive radio networks (CRN) to detect network problems. Several studies have been conducted utilising various deep learning and machine learning methods. However, only a small number of analyses have used gated recurrent units (GRU), and that too in software defined networks, but these are seldom used in CRN. In this paper, we used GRU in CRN to train and test the dataset of spectrum sensing results. One of the deep learning models with less complexity and more effectiveness for small datasets is GRU, the lightest variant of the LSTM. The support vector machine (SVM) classifier is employed in this study's output layer to distinguish between authorised users and malicious users in cognitive radio network. The novelty of this paper is the application of combined models of GRU and SVM in cognitive radio networks. A high testing accuracy of 82.45%, training accuracy of 80.99% and detection probability of 1 is achieved at 65 epochs in this proposed work.

18.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139552

RESUMO

This paper focuses on achieving the low-cost coexistence of the networks in an unlicensed spectrum by making them operate on non-overlapping channels. For achieving this goal, we first give a universal convergence analysis framework for the unlicensed spectrum allocation algorithm. Then, a one-timescale iteration-adjustable unlicensed spectrum allocation algorithm is developed, where the step size and timescale parameter can be jointly adjusted based on the system performance requirement and signal overhead concern. After that, we derive the sufficient condition for the one-timescale algorithm. Furthermore, the upper bound of convergence error of the one-timescale spectrum allocation algorithm is obtained. Due to the multi-timescale evolution of the network states in the wireless network, we further propose a two-timescale iteration-adjustable joint frequency selection and frequency allocation algorithm, where the frequency selection iteration timescale is set according to the slow-changing statistical channel state information (CSI), whereas the frequency allocation iteration timescale is set according to the fast-changing local CSI. Then, we derive the convergence condition of two-timescale algorithms and the upper bound of the corresponding convergence error. The experimentalresults show that the small timescale adjustment parameter and large step size can help decrease the convergence error. Moreover, compared with traditional algorithms, the two-timescale policy can achieve throughput similar to traditional algorithms with very low iteration overhead.

19.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514776

RESUMO

Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for RF signal detection in the wideband spectrum. The objective is to accurately estimate the noise distribution in a wideband radio spectrogram and improve the detection performance by substracting it. The proposed method utilizes convolutional neural networks to analyze radio spectrograms. Model evaluation demonstrates that the RFROI-CNN approach outperforms the traditional energy detection with thresholding method by achieving significantly better detection results, even up to 6 dB, and expanding the capabilities of wideband spectrum sensing systems. The proposed approach, with its precise estimation of noise distribution and consideration of neighboring signal power values, proves to be a promising solution for RF signal detection.

20.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112217

RESUMO

Due to the characteristics of global coverage, on-demand access, and large capacity, the low earth orbit (LEO) satellite communication (SatCom) has become one promising technology to support the Internet-of-Things (IoT). However, due to the scarcity of satellite spectrum and the high cost of designing satellites, it is difficult to launch a dedicated satellite for IoT communications. To facilitate IoT communications over LEO SatCom, in this paper, we propose the cognitive LEO satellite system, where the IoT users act as the secondary user to access the legacy LEO satellites and cognitively use the spectrum of the legacy LEO users. Due to the flexibility of code division multiple access (CDMA) in multiple access and the wide use of CDMA in LEO SatCom, we apply CDMA to support cognitive satellite IoT communications. For the cognitive LEO satellite system, we are interested in the achievable rate analysis and resource allocation. Specifically, considering the randomness of spreading codes, we use the random matrix theory to analyze the asymptotic signal-to-interference-plus-noise ratios (SINRs) and accordingly obtain the achievable rates for both legacy and IoT systems. The power of the legacy and IoT transmissions at the receiver are jointly allocated to maximize the sum rate of the IoT transmission subject to the legacy satellite system performance requirement and the maximum received power constraints. We prove that the sum rate of the IoT users is quasi-concave over the satellite terminal receive power, based on which the optimal receive powers for these two systems are derived. Finally, the resource allocation scheme proposed in this paper has been verified by extensive simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA