Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32621799

RESUMO

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Assuntos
Cicatriz/metabolismo , Colágeno Tipo V/deficiência , Colágeno Tipo V/metabolismo , Traumatismos Cardíacos/metabolismo , Contração Miocárdica/genética , Miofibroblastos/metabolismo , Animais , Cicatriz/genética , Cicatriz/fisiopatologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica/genética , Integrinas/antagonistas & inibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacologia , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica/instrumentação , Microscopia Eletrônica de Transmissão , Contração Miocárdica/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/patologia , Miofibroblastos/ultraestrutura , Análise de Componente Principal , Proteômica , RNA-Seq , Análise de Célula Única
2.
Connect Tissue Res ; 63(5): 498-513, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35129018

RESUMO

PURPOSE: Type V collagen (collagen V) is one of the important components of extracellular matrix (ECM) in pancreas. We previously reported that pre-coating collagen V on the culture dishes enhanced insulin production in INS-1 rat pancreatic ß cells. In this study, we investigate the underlying mechanism. RESULTS: Insulin biosynthesis and secretion are both increased in INS-1 cells cultured on collagen V-coated dishes, accompanied by the reduced nuclear translocation of Yes-associated protein (YAP), a transcriptional co-activator. YAP, the downstream effector of Hippo signaling pathway, plays an important role in the development and function of pancreas. Inhibition of YAP activation by verteporfin further up-regulates insulin biosynthesis and secretion. Silencing large tumor suppressor (LATS), a core component of Hippo pathway which inhibits activity of YAP by phosphorylation, by siRNA transfection inhibits both insulin biosynthesis and secretion. In the present study, the protein level of insulin-like growth factor 1 receptor (IGF-1 R), detected as the upstream molecule of YAP, is reduced in the INS-1 cells cultured on the dishes coated with collagen V. The silencing of IGF-1 R by siRNA transfection further enhances insulin biosynthesis and secretion. IGF-1 treatment reduces collagen V-induced up-regulation of insulin biosynthesis and secretion, accompanying the increased nuclear YAP. CONCLUSION: Inhibition of IGF-1 R/YAP signal pathway is involved in collagen V-induced insulin biosynthesis and secretion in INS-1 cells.


Assuntos
Insulina , Ilhotas Pancreáticas , Receptor IGF Tipo 1 , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Colágeno Tipo V/farmacologia , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Ratos , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293511

RESUMO

Cutaneous fibrosis is one of the main features of systemic sclerosis (SSc). Recent findings correlated abnormal collagen V (Col V) deposition in dermis with skin thickening and disease activity in SSc. Considering that Col V is an important regulator of collagen fibrillogenesis, understanding the role of Col V in the first two years of the skin fibrosis in SSc (early SSc) can help to determine new targets for future treatments. In this study, we analyzed the morphological, ultrastructural and molecular features of α1(V) and α2(V) chains and the expression of their coding genes COL5A1 and COL5A2 in collagen fibrillogenesis in early-SSc. Skin biopsies were obtained from seven consecutive treatment-naïve patients with SSc-related fibrosis and four healthy controls. Our data showed increased α1(V) and α2(V) chain expression in the reticular dermis of early-SSc patients; however, immunofluorescence and ultrastructural immunogold staining determined a significant decreased expression of the α1(V) chain along the dermoepidermal junction in the papillary dermis from early-SSc-patients in relation to the control (12.77 ± 1.34 vs. 66.84 ± 3.36; p < 0.0001). The immunoblot confirmed the decreased expression of the α1(V) chain by the cutaneous fibroblasts of early-SSc, despite the increased COL5A1 and COL5A2 gene expression. In contrast, the α2(V) chain was overexpressed in the small vessels (63.18 ± 3.56 vs. 12.16 ± 0.81; p < 0.0001) and capillaries (60.88 ± 5.82 vs. 15.11 ± 3.80; p < 0.0001) in the reticular dermis of early-SSc patients. Furthermore, COLVA2 siRNA in SSc cutaneous fibroblasts resulted in a decreased α1(V) chain expression. These results highlight an intense decrease in the α1(V) chain along the dermoepidermal junction, suggesting an altered molecular histoarchitecture in the SSc papillary dermis, with a possible decrease in the expression of the α1(V)3 homotrimeric isoform, which could interfere with the thickening and cutaneous fibrosis related to SSc.


Assuntos
Derme , Escleroderma Sistêmico , Humanos , RNA Interferente Pequeno/metabolismo , Estrutura Molecular , Derme/metabolismo , Escleroderma Sistêmico/patologia , Fibrose , Colágeno/metabolismo , Pele/metabolismo , Fibroblastos/metabolismo
4.
Arch Biochem Biophys ; 697: 108676, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188736

RESUMO

Keloids are characterized by fibroblast activation and altered architecture of extracellular matrix (ECM). Excessive deposition of ECM molecules and irregular organization of collagen fibers have been observed in keloids. However, the ultrastructural alteration of collagen has not been fully investigated. In this study, the differences in tissue structure, collagen ultrastructure, matrix components, mechanical properties and collagen assembling molecules between keloids and their extra-lesional skins (ELSs) were explored using histology, transmission electron microscope (TEM), qPCR, Western blot, immunohistochemistry and bioinformatics. Histological evaluation showed thinner fibers in keloids with increased contents of collagen III and proteoglycans, which were supported by TEM findings of thinner collagen fibrils and less developed D-band periodicity in keloids than in ELSs (p < 0.05). In addition, total collagen and water contents were significantly increased (p < 0.05) along with richer proteoglycan production in keloids vs ELSs, which also led to increased stiffness and decreased maximal load in keloids compared with ELSs. Mechanism study showed that multiple molecules related to matrix assembly were significantly upregulated in keloids (p < 0.05). In particular, lumican and collagen V showed high degrees in co-expression analysis and their upregulation levels were revealed from microarray data, which were also verified in keloids at both gene and protein levels (p < 0.05). Nevertheless, siRNA knockdown of lumican failed to affect in vitro collagen assembly, but caused upregulated collagen V expression along with the upregulation of focal adhesion kinase, TGF-ß1, TGF-ß3 and PDGF, among which some are known for capable of enhancing collagen V expression. In conclusion, this study demonstrates impaired collagen assembly along with enhanced expression of lumican and collagen V, both are known for interfering with collagen fibril assembly.


Assuntos
Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Regulação da Expressão Gênica , Queloide/genética , Queloide/metabolismo , Lumicana/genética , Adulto , Colágeno Tipo V/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Connect Tissue Res ; 62(6): 658-670, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33957832

RESUMO

Extracellular matrix (ECM) plays an important role in tissue repair, cell proliferation, and differentiation. Our previous study showed that collagen I and collagen V differently regulate the proliferation of rat pancreatic ß cells (INS-1 cells) through opposite influences on the nuclear translocation of ß-catenin. In this study, we investigated the ß-catenin pathway in INS-1 cells on dishes coated with collagen I or V. We found that nuclear translocation of the transcription factor Yes-associated protein (YAP) was enhanced by collagen I and suppressed by collagen V, but had no effect on INS-1 cell proliferation. Morphologically, INS-1 cells on collagen V-coated dishes showed stronger cell-to-cell adhesion, while the cells on collagen I-coated dishes showed weaker cell-to-cell adhesion in comparison with the cells on non-coated dishes. E-cadherin played an inhibitory role in the proliferation of INS-1 cells cultured on collagen I or collagen V coated dishes via regulation of the nuclear translocation of ß-catenin. Integrin ß1 was enhanced with collagen I, while it was repressed with collagen V. The integrin ß1 pathway positively regulated the cell proliferation. Inhibition of integrin ß1 pathway restored the protein level of E-cadherin and inhibited the nuclear translocation of ß-catenin in the cells on collagen I-coated dishes, but no effect was observed in the cells on collagen V-coated dishes. In conclusion, collagen I enhances the proliferation of INS-1 cells via the integrin ß1 and E-cadherin/ß-catenin signaling pathway. In INS-1 cells on collagen V-coated dishes, both integrin ß1 and E-cadherin/ß-catenin signal pathways are involved in the inhibition of proliferation.


Assuntos
Integrina beta1 , beta Catenina , Animais , Caderinas/metabolismo , Caderinas/farmacologia , Proliferação de Células , Colágeno/farmacologia , Colágeno Tipo I/metabolismo , Integrina beta1/metabolismo , Integrina beta1/farmacologia , Ratos , beta Catenina/metabolismo
6.
Transpl Int ; 33(1): 41-49, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31393646

RESUMO

Chronic lung allograft dysfunction (CLAD) comprises both bronchiolitis obliterans syndrome and restrictive allograft syndrome as subtypes. After lung transplantation, CLAD remains a major limitation for long-term survival, and lung transplant recipients therefore have poorer outcomes compared with recipients of other solid organ transplants. Although the number of lung transplants continues to increase globally, the field demands detailed understanding of immunoregulatory mechanisms and more effective individualized therapies to combat CLAD. Emerging evidence suggests that CLAD is multifactorial and involves a complex, delicate interplay of multiple factors, including perioperative donor characteristics, inflammation induced immediately following transplant, post-transplant infection and interplay between allo- and autoimmunity directed to donor antigens. Recently, identification of stress-induced exosome release from the transplanted organ has emerged as an underlying mechanism in the development of chronic rejection and promises to prompt novel strategies for future therapeutic interventions. In this review, we will discuss recent studies and ongoing research into the mechanisms for the development of CLAD, with emphasis on immune responses to lung-associated self-antigens-that is, autoimmunity.


Assuntos
Autoanticorpos , Bronquiolite Obliterante , Transplante de Pulmão , Autoimunidade , Bronquiolite Obliterante/etiologia , Rejeição de Enxerto , Humanos , Pulmão/fisiopatologia , Transplante de Pulmão/efeitos adversos
7.
Int J Immunogenet ; 47(3): 235-242, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32426916

RESUMO

Organ transplantation is an effective way to treat end-stage organ disease. Extending the graft survival is one of the major goals in the modern era of organ transplantation. However, long-term graft survival has not significantly improved in recent years despite the improvement of patient management and advancement of immunosuppression regimen. Antibody-mediated rejection is a major obstacle for long-term graft survival. Donor human leucocyte antigen (HLA)-specific antibodies were initially identified as a major cause for antibody-mediated rejection. Recently, with the development of solid-phase-based assay reagents, the contribution of non-HLA antibodies in organ transplantation starts to be appreciated. Here, we review the role of most studied non-HLA antibodies, including angiotensin II type 1 receptor (AT1 R), K-α-tubulin and vimentin antibodies, in the solid organ transplant, and discuss the possible mechanism by which these antibodies are stimulated.


Assuntos
Anticorpos/imunologia , Rejeição de Enxerto/imunologia , Receptor Tipo 1 de Angiotensina/imunologia , Tubulina (Proteína)/imunologia , Vimentina/imunologia , Anticorpos/genética , Autoanticorpos/imunologia , Rejeição de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Antígenos HLA/imunologia , Humanos , Transplante de Órgãos/efeitos adversos , Doadores de Tecidos , Transplante Homólogo/efeitos adversos
8.
Pathophysiology ; 25(4): 373-379, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30030016

RESUMO

Cardiac remodeling (CR) is a structural change of the heart due to chronic hemodynamic overload related to changes in both myocyte and extracellular matrix (ECM). We investigated that the imbalance of collagen V promotes cardiomyocyte apoptosis that contributes to heart failure and cell death. Aortic stenosis was induced surgically and male Wistar rats were randomized to 18 weeks (Sham 18 w, n = 12; AoS 18 w, n = 12) and severe of heart failure (Sham HF, n = 12; AoS HF, n = 12) groups. Functional and structural echocardiogram, immunohistochemistry for Ki-67, TUNEL assay and Immunofluorescence for collagen were performed. Our main results were: (1) Progressive reduction of cardiac functional capacity due to cardiac remodeling with decreased eject fraction in heart failure; (2) Imbalance of collagen deposition with increased, crowded and irregular collagen I in situ expression; (3) Dysregulation of dynamic control of collagen fibers with exposed epitopes of collagen V; (4) Additional apoptosis that are dependent to cardiac injury. The collagen V expression in cardiac remodeling is for the first time described and may be related to additional apoptosis and autoimmune response. Our findings suggest a critical role of collagen V in cardiac remodeling to modulate and promote heart failure and death.

9.
Connect Tissue Res ; 57(1): 1-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26713685

RESUMO

Mutations in collagen V are associated with classic Ehlers-Danlos syndrome (EDS). A significant percentage of these mutations result in haploinsufficiency for collagen V. The purpose of this work was to determine if changes in collagen V expression are associated with altered dermal fibroblast behavior contributing to the poor wound healing response. A haploinsufficient Col5a1(+/-) mouse model of EDS was utilized. In vivo wound healing studies demonstrated that mutant mice healed significantly slower than Col5a1(+/+) mice. The basis for this difference was examined in vitro using dermal fibroblast strains isolated from Col5a1(+/-) and Col5a1(+/+) mice. Fibroblast proliferation was determined for each strain by counting cells at different time points after seeding as well as using the proliferation marker Ki-67. Fibroblast attachment to collagens I and III and fibronectin also was analyzed. In addition, in vitro scratch wounds were used to analyze fibroblast wound closure. Significantly decreased fibroblast proliferation was observed in Col5a1(+/-) compared to Col5a1(+/+) fibroblasts. Our data indicate that the decreased fibroblast number was not due to apoptosis. Wildtype Col5a1(+/+) fibroblasts attached significantly better to components of the wound matrix (collagens I and III and fibronectin) than Col5a1(+/-) fibroblasts. A significant difference in in vitro scratch wound closure rates also was observed. Col5a1(+/+) fibroblasts closed wounds in 22 h, while Col5a1(+/-) fibroblasts demonstrated ~80% closure. There were significant differences in closure at all time points analyzed. Our data suggest that decreased fibroblast proliferation, extracellular matrix attachment, and migration contribute to the decreased wound healing response in classic EDS.


Assuntos
Proliferação de Células/genética , Colágeno , Derme/metabolismo , Síndrome de Ehlers-Danlos , Fibroblastos/metabolismo , Haploinsuficiência , Animais , Apoptose/genética , Colágeno/genética , Colágeno/metabolismo , Derme/patologia , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Fibroblastos/patologia , Camundongos , Camundongos Mutantes , Cicatrização/genética
10.
J Orthop Res ; 42(5): 950-960, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37975633

RESUMO

Collagen V (Col5) is a quantitatively minor component of collagen fibrils comprising tendon, however, plays a crucial role in regulation of development and dynamic healing processes. Clinically, patients with COL5a1 haploinsufficiency, known as classic Ehlers-Danlos Syndrome (cEDS), present with hyperextensible skin, joint instability and laxity, with females more likely to be affected. Previous studies in Col5-deficient mice indicated that reduced Col5a1 expression leads to a reduction in stiffness, fibril deposition, and altered fibril structure. Additionally, Col5-deficient male tendons demonstrated altered healing compared to wild-type tendons, however female mice have not yet been studied utilizing this model. Along with clinical differences between sexes in cEDS patient populations, differences in hormone physiology may be a factor influencing tendon health. Therefore, the objective of this study was to utilize a Col5a1+/ - female mouse model, to determine the effect of Col5 on tendon cell morphology, cell density, tissue composition, and mechanical properties throughout healing. We hypothesized that reduction in Col5 expression would result in an abnormal wound matrix post-injury, resulting in reduced mechanical properties compared to normal tendons. Following patellar tendon surgery, mice were euthanized at 1, 3, and 6-week post-injury. Col5-deficient tendons demonstrated altered and decreased healing compared to WT tendons. The lack of resolution in cellularity by 6-week post-injury in Col5-deficient tendons influenced the decreased mechanical properties. Stiffness did not increase post-injury in Col5-deficient mice, and collagen fiber realignment was delayed during mechanical loading. Therefore, increased Col5a1 expression post-injury is necessary to re-establish matrix engagement and cellularity throughout tendon healing.


Assuntos
Síndrome de Ehlers-Danlos , Ligamento Patelar , Camundongos , Humanos , Masculino , Animais , Feminino , Haploinsuficiência , Colágeno/metabolismo , Tendões/metabolismo , Contagem de Células
11.
Int J Cardiol Heart Vasc ; 50: 101327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38419608

RESUMO

Background and aim: Atrial fibrosis is an important factor in initiating and maintaining atrial fibrillation (AF). Collagen V belongs to fibrillar collagens. There are, however no data on collagen V in AF. The aim of this work was to study the quantity of collagen V and its relationship with the number of fibroblasts and TGF- b 1 expression in patients in sinus rhythm (SR) and in patients with atrial fibrillation (AF). Methods: We used quantitative immuhistochemistry to study collagen V in right and left atrial biopsies obtained from 35 patients in SR, 35 patients with paroxysmal AF (pAF) and 27 patients with chronic, long-standing persistent AF (cAF). In addition, we have quantified the number of vimentin-positive fibroblasts and expression levels of TGF-ß1. Results: Compared to patients in SR, collagen V was increased 1.8- and 3.1-fold in patients with pAF and cAF, respectively. In comparison with SR patients, the number of vimentin-positive cells increased significantly 1.46- and 1.8-fold in pAF and cAF patients, respectively.Compared to SR patients, expression levels of TGF-ß1, expressed as fluorescence units per tissue area, was significantly increased by 77 % and 300 % in patients with pAF and cAF, respectively. Similar to intensity measurements, the number of TGFß1-positive cells per 1 mm2 atrial tissue increased significantly from 35.5 ± 5.5 cells in SR patients to 61.9 ± 12.4 cells in pAF and 131.5 ± 23.5 cells in cAF. In both types of measurements, there was a statistically significant difference between pAF and cAF groups. Conclusions: This is the first study to show that AF is associated with increased expression levels of collagen V and TGF-ß1indicating its role in the pathogenesis of atrial fibrosis. In addition, increases in collagen V correlate with increased number of fibroblasts and TGF-ß1 and are more pronounced in cAF patients than those in pAF patients.

12.
Semin Thorac Cardiovasc Surg ; 35(1): 177-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35181441

RESUMO

Gastroesophageal reflux (GER) and pretransplant antibodies against lung self-antigens (SAbs) collagen-V and/or k-alpha 1 tubulin are both independently associated with allograft dysfunction after lung transplantation (LTx). The role of GER in inducing lung injury and SAbs is unknown. We aimed to study the association between pre-LTx GER and SAbs. After IRB approval, we retrieved SAb assays conducted between 2015 and 2019 and collected 24 hour GER data for these patients. Patients were divided into 2 groups: no reflux (GER-) and pathologic reflux (GER+) to compare the prevalence of SAbs. Multivariate analysis was used to study the association between GER and SAbs in the whole cohort and in restrictive lung disease (RLD) and obstructive lung disease (OLD) subsets. Proximal esophageal reflux (PER) events ≥5 was considered abnormal. Patients (n = 134; 73 men) were divided into groups: GER- (54.5%, n = 73) and GER+ (45.5%, n = 61). The prevalence of GER was higher in the RLD than in the OLD subset (p < 0.001). The overall prevalence of SAbs was 53.7% (n = 72), higher in the GER+ than the GER- group (65.6% vs 43.8%, p = 0.012), but comparable between RLD and OLD subsets. Overall, SAbs were associated with GER (p = 0.012) and abnormal PER (p = 0.017). GER and abnormal PER increased the odds of SAbs in the RLD subset (OR [95% CI]: 2.825 [1.033-7.725], p = 0.040 and OR [95% CI]: 3.551 [1.271-9.925], p = 0.014, respectively) but not in the OLD subset. LTx candidates have a high prevalence of SAbs, which are significantly associated with GER and abnormal PER in patients with RLD.


Assuntos
Refluxo Gastroesofágico , Pneumopatias , Transplante de Pulmão , Masculino , Humanos , Resultado do Tratamento , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/epidemiologia , Pulmão
13.
J Biomech ; 144: 111315, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201909

RESUMO

Tendon function is dependent on proper organization and maintenance of the collagen I tissue matrix. Collagen V is a critical regulator of collagen I fibrils, and while prior studies have shown a negative impact of collagen V deficiency on tendon healing outcomes, these studies are confounded by collagen V deficiency through tendon development. The specific role of collagen V in regulating healing tendon properties is therefore unknown. By using inducible Col5a1 knockdown models and analyzing gene expression, fibril and histological tendon morphology, and tendon mechanical properties, this study defines the isolated role of collagen V through tendon healing. Patellar tendon injury caused large changes in tendon gene expression, and Col5a1 knockdown resulted in dysregulated expression of several genes through tendon healing. Col5a1 knockdown also impacted collagen fibril size and shape without observable changes in scar tissue formation. Surprisingly, heterozygous Col5a1 knockdown resulted in improved stiffness of healing tendons that was not observed with homozygous Col5a1 knockdown. Together, these results present an unexpected and dynamic role of collagen V deficiency on tendon healing outcomes following injury. This work suggests a model of tendon healing in which quasi-static mechanics may be improved through titration of collagen fibril size and shape with modulation of collagen V expression and activity.


Assuntos
Ligamento Patelar , Traumatismos dos Tendões , Camundongos , Animais , Fenômenos Biomecânicos , Tendões/metabolismo , Colágeno/metabolismo , Traumatismos dos Tendões/metabolismo , Colágeno Tipo I/genética
14.
Curr Eye Res ; 47(2): 206-213, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34407700

RESUMO

BACKGROUND: Keratoconus (KC) is a corneal disorder, associated with oxidative stress, hypoxia and as several times discussed, potentially with thyroid gland dysfunction. We aimed to investigate the effect of thyroxine on transforming growth factor ß1 (TGF-ß1), collagen I and V (Col I and V) expression in human corneal fibroblasts (HCFs) and human keratocytes of KC corneas, in vitro. METHODS: Primary human KC-keratocytes and normal keratocytes were isolated and cultured as corneal fibroblasts or keratocytes. The effect of 0.1 µg/ml and 1.0 µg/ml thyroxine on TGF-ß1, Col I and Col V expression was investigated by qPCR, Western blot, and ELISA. Proliferation assay was performed using BrdU ELISA to observe the 24h effect of 1.0 µg/ml thyroxine on keratocytes, in vitro. RESULTS: TGFB1 mRNA expression of normal keratocytes increased following 1.0 µg/ml thyroxine stimulation for 24 h (p = .036), without changes in protein expression. Col I protein expression of KC-HCFs increased following 1.0 µg/ml thyroxine stimulation for 24 h (p = .0003). Proliferation of normal and KC keratocytes increased following a 7-day growth period and 24 hours thyroxine administration (p = .018; p = .024). CONCLUSIONS: Thyroxine may affect the Col I protein expression in KC-HCFs, but not in KC keratocytes, in vitro. Thyroxine administration has no effect on TGF-ß1, collagen I and V expression of keratoconus keratocytes. Therefore, an increased thyroxine concentration alone seems not to be causally related to the development of keratoconus.


Assuntos
Colágeno Tipo V/metabolismo , Ceratocone , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Córnea/metabolismo , Fibroblastos/metabolismo , Humanos , Ceratocone/tratamento farmacológico , Ceratocone/genética , Ceratocone/metabolismo , Tiroxina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
15.
Front Cell Dev Biol ; 10: 874840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547807

RESUMO

Ehlers-Danlos Syndromes (EDSs) are a group of connective tissue disorders, characterized by skin stretchability, joint hypermobility and instability. Mechanically, various tissues from EDS patients exhibit lowered elastic modulus and lowered ultimate strength. This change in mechanics has been associated with EDS symptoms. However, recent evidence points toward a possibility that the comorbidities of EDS could be also associated with reduced tissue stiffness. In this review, we focus on mast cell activation syndrome and impaired wound healing, comorbidities associated with the classical type (cEDS) and the hypermobile type (hEDS), respectively, and discuss potential mechanobiological pathways involved in the comorbidities.

16.
Pathol Res Pract ; 220: 153382, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647866

RESUMO

OBJECTIVE: The pulmonary vascular remodeling in systemic sclerosis (SSc) is poorly understood and animal models are lacking. Type V collagen (COLV) is elevated in SSc and is implicated in the pathogenesis, and immunization with human COLV induces SSc-like skin and lung changes in rabbits and mice. Here we tested the hypothesis that COLV immunization will induce pathological and functional changes that phenocopy SSc-associated pulmonary vascular disease. METHODS: Pulmonary vascular changes in rabbits immunized with human COLV were extensively characterized by a combination of histology, electron microscopy and immunohistochemistry. Physiologic changes induced by COLV in explanted pulmonary artery rings were evaluated. The pattern of histopathologic alterations and gene expression induced in immunized rabbits were compared to those in SSc patients. RESULTS: COLV immunization was accompanied by striking pulmonary vascular abnormalities, characterized by reduced capillary density, perivascular inflammation, endothelial cell injury and collagen accumulation, that closely phenocopy changes seen in SSc patients. Moreover, pulmonary arteries from immunized rabbits showed impaired ex vivo vascular relaxation. Expression of COL5A2 was significantly increased in the lungs from immunized rabbits (p = 0.02), as well as in patients with SSc (P = 0.02). CONCLUSION: COLV immunity in rabbits is associated with marked vascular remodeling in the lung that phenocopies early-stage human SSc-associated pulmonary vascular disease. COLV immunization therefore represents a novel approach to model SSc pulmonary vascular pathology. Moreover, our findings suggest that COLV might represent a novel pathogenic autoantigen in SSc and future studies with the present model should be developed for possible association with PAH.


Assuntos
Colágeno Tipo V/imunologia , Pulmão/irrigação sanguínea , Artéria Pulmonar/patologia , Escleroderma Sistêmico/patologia , Remodelação Vascular , Adulto , Animais , Estudos de Casos e Controles , Colágeno Tipo V/metabolismo , Modelos Animais de Doenças , Feminino , Hemodinâmica , Humanos , Pessoa de Meia-Idade , Artéria Pulmonar/imunologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Coelhos , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/fisiopatologia
17.
Front Cell Dev Biol ; 9: 606890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829012

RESUMO

Collagen is essential for cartilage adhesion and formation. In the present study, histology, immunofluorescence, morphometry, and qRT-PCR suggested that adipose-derived stem cells (ADSCs) stimulated by type V collagen (Col V) induce a significant increase of type II collagen (Col II) in the degenerative area of surgical-induced osteoarthritic rabbit articular cartilage (OA). In vitro, the effects of Col V on the proliferation and differentiation of ADSC were investigated. The expression of the cartilage-related genes Col2a1 and Acan was significantly upregulated and Pou5fl was downregulated post-ADSC/Col V treatment. Post-ADSC/Col V treatment, in vivo analyses revealed that rabbits showed typical signs of osteoarthritic articular cartilage regeneration by hematoxylin and eosin (H&E) and Safranin O/Fast Green staining. Immunohistochemical staining demonstrated that the volume of Col II fibers and the expression of Col II protein were significantly increased, and apoptosis Fas ligand positive significantly decreased post-ADSC/Col V treatment. In conclusion, the expression of Col II was higher in rabbits with surgical-induced osteoarthritic articular cartilage; hence, ADSC/Col V may be a promising therapeutic target for OA treatment.

18.
Animals (Basel) ; 10(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143196

RESUMO

Classical Ehlers-Danlos syndrome (cEDS) is a heritable connective tissue disorder characterized by variable degrees of skin hyperextensibility and fragility, atrophic scarring, and generalized joint hypermobility. The purpose of this study was to characterize the clinicopathological phenotype of a cEDS-affected Holstein calf and to identify the causative genetic variant associated with the disorder by whole-genome sequencing (WGS). A 3-day-old female Holstein calf was referred because of easily induced skin detachment and hyperextensibility in the neck. A complete clinical investigation was performed in the calf, dam, and maternal-grandmother. The calf and dam showed hyperextensibility of the neck skin and atrophic scarring; additionally, the calf presented skin fragility. Moreover, the histopathology of biopsies from the calf and its dam showed that the collagen bundles in affected skin areas were wavy, short, thin, and surrounded by edema and moderate to severe acute hemorrhages. Genetic analysis revealed a private heterozygous missense variant in COL5A2 (c.2366G>T; p.Gly789Val) that was present only in the calf and dam. This confirmed the diagnosis of cEDS and represents the first report of a causal variant for cEDS in cattle and the first COL5A2-related large animal model.

19.
Pathol Res Pract ; 216(9): 153094, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32825961

RESUMO

Inhalation of silica particles causes silicosis: an occupational lung disease characterized by persistent inflammation with granuloma formation that leads to tissue remodeling and impairment of lung function. Although silicosis has been studied intensely, little is known about the crucial cellular mechanisms that initiate and drive the process of inflammation and fibrosis. Recently, found in inflammatory zone 1 (FIZZ1) protein, produced by alveolar macrophages and fibroblasts have been shown to induce the proliferation of myofibroblasts and their transdifferentiation, causing tissue fibrosis. Moreover, autoimmunogenic collagen V, produced by alveolar epithelial cells and fibroblasts, is involved in the pathophysiology of interstitial pulmonary fibrosis and bleomycin-induced lung fibrosis. Based on the aforementioned we hypothesized that FIZZ1 and collagen V may be involved in the silicotic granuloma process in mice lungs. Male C57BL/6 mice (N = 20) received intratracheal administration of silica particles (Silica; 20 mg in 50 µL saline) or saline (Control; 50 µL). After 15 days, the lung histology was performed through immunohistochemistry and morphometric analysis. Within silicotic granulomas, collagen V and FIZZ1 increased, while peroxisome proliferator-activated receptor gamma (PPARγ) positive cells decreased. In addition, the expression of proteins Notch-1, alpha smooth muscle actin (α-SMA) and macrophages163 (CD163) were higher in silicotic granulomas than control lungs. A significant positive correlation was found between collagen V and FIZZ1 (r = 0.70; p < 0.05), collagen V and Notch-1 (r = 0.72; p < 0.05), whereas Collagen V was inversely associated with peroxisome proliferator-activated receptor gamma (r=-0.69; p < 0.05). These findings suggested that collagen V association with FIZZ1, Notch-1 and PPARγ might be a key pathogenic mechanism for silicotic granulomas in mice lungs.


Assuntos
Colágeno/metabolismo , Granuloma/patologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Inflamação/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , Transdução de Sinais/fisiologia , Silicose/metabolismo , Silicose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA