Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931733

RESUMO

Current challenges in visible and infrared image fusion include color information distortion, texture detail loss, and target edge blur. To address these issues, a fusion algorithm based on double-domain transform filter and nonlinear contrast transform feature extraction (DDCTFuse) is proposed. First, for the problem of incomplete detail extraction that exists in the traditional transform domain image decomposition, an adaptive high-pass filter is proposed to decompose images into high-frequency and low-frequency portions. Second, in order to address the issue of fuzzy fusion target caused by contrast loss during the fusion process, a novel feature extraction algorithm is devised based on a novel nonlinear transform function. Finally, the fusion results are optimized and color-corrected by our proposed spatial-domain logical filter, in order to solve the color loss and edge blur generated in the fusion process. To validate the benefits of the proposed algorithm, nine classical algorithms are compared on the LLVIP, MSRS, INO, and Roadscene datasets. The results of these experiments indicate that the proposed fusion algorithm exhibits distinct targets, provides comprehensive scene information, and offers significant image contrast.

2.
Toxicol Pathol ; 51(6): 313-328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-38288712

RESUMO

Digital pathology workflows in toxicologic pathology rely on whole slide images (WSIs) from histopathology slides. Inconsistent color reproduction by WSI scanners of different models and from different manufacturers can result in different color representations and inter-scanner color variation in the WSIs. Although pathologists can accommodate a range of color variation during their evaluation of WSIs, color variability can degrade the performance of computational applications in digital pathology. In particular, color variability can compromise the generalization of artificial intelligence applications to large volumes of data from diverse sources. To address these challenges, we developed a process that includes two modules: (1) assessing the color reproducibility of our scanners and the color variation among them and (2) applying color correction to WSIs to minimize the color deviation and variation. Our process ensures consistent color reproduction across WSI scanners and enhances color homogeneity in WSIs, and its flexibility enables easy integration as a post-processing step following scanning by WSI scanners of different models and from different manufacturers.


Assuntos
Inteligência Artificial , Patologistas , Humanos , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420873

RESUMO

Underwater images tend to suffer from critical quality degradation, such as poor visibility, contrast reduction, and color deviation by virtue of the light absorption and scattering in water media. It is a challenging problem for these images to enhance visibility, improve contrast, and eliminate color cast. This paper proposes an effective and high-speed enhancement and restoration method based on the dark channel prior (DCP) for underwater images and video. Firstly, an improved background light (BL) estimation method is proposed to estimate BL accurately. Secondly, the R channel's transmission map (TM) based on the DCP is estimated sketchily, and a TM optimizer integrating the scene depth map and the adaptive saturation map (ASM) is designed to refine the afore-mentioned coarse TM. Later, the TMs of G-B channels are computed by their ratio to the attenuation coefficient of the red channel. Finally, an improved color correction algorithm is adopted to improve visibility and brightness. Several typical image-quality assessment indexes are employed to testify that the proposed method can restore underwater low-quality images more effectively than other advanced methods. An underwater video real-time measurement is also conducted on the flipper-propelled underwater vehicle-manipulator system to verify the effectiveness of the proposed method in the real scene.


Assuntos
Algoritmos , Água
4.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679413

RESUMO

Texture mapping can be defined as the colorization of a 3D mesh using one or multiple images. In the case of multiple images, this process often results in textured meshes with unappealing visual artifacts, known as texture seams, caused by the lack of color similarity between the images. The main goal of this work is to create textured meshes free of texture seams by color correcting all the images used. We propose a novel color-correction approach, called sequential pairwise color correction, capable of color correcting multiple images from the same scene, using a pairwise-based method. This approach consists of sequentially color correcting each image of the set with respect to a reference image, following color-correction paths computed from a weighted graph. The color-correction algorithm is integrated with a texture-mapping pipeline that receives uncorrected images, a 3D mesh, and point clouds as inputs, producing color-corrected images and a textured mesh as outputs. Results show that the proposed approach outperforms several state-of-the-art color-correction algorithms, both in qualitative and quantitative evaluations. The approach eliminates most texture seams, significantly increasing the visual quality of the textured meshes.


Assuntos
Algoritmos , Artefatos , Motivação , Cor
5.
Sensors (Basel) ; 22(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36236230

RESUMO

This study presents a vision-based water color identification system designed for monitoring aquaculture ponds. The algorithm proposed in this system can identify water color, which is an important factor in aquaculture farming management. To address the effect of outdoor lighting conditions on the proposed system, a color correction method using a color checkerboard was introduced. Several candidates for water-only image patches were extracted by performing image segmentation and fuzzy inferencing. Finally, a deep learning-based model was employed to identify the color of these patches and then find the representative color of the water. Experiments at different aquaculture sites verified the effectiveness of the proposed system and its algorithm. The color identification accuracy exceeded 96% for the test data.


Assuntos
Aquicultura , Água , Agricultura/métodos , Algoritmos , Aquicultura/métodos , Cor , Fazendas
6.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270879

RESUMO

Texture mapping of 3D models using multiple images often results in textured meshes with unappealing visual artifacts known as texture seams. These artifacts can be more or less visible, depending on the color similarity between the used images. The main goal of this work is to produce textured meshes free of texture seams through a process of color correcting all images of the scene. To accomplish this goal, we propose two contributions to the state-of-the-art of color correction: a pairwise-based methodology, capable of color correcting multiple images from the same scene; the application of 3D information from the scene, namely meshes and point clouds, to build a filtering procedure, in order to produce a more reliable spatial registration between images, thereby increasing the robustness of the color correction procedure. We also present a texture mapping pipeline that receives uncorrected images, an untextured mesh, and point clouds as inputs, producing a final textured mesh and color corrected images as output. Results include a comparison with four other color correction approaches. These show that the proposed approach outperforms all others, both in qualitative and quantitative metrics. The proposed approach enhances the visual quality of textured meshes by eliminating most of the texture seams.

7.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501750

RESUMO

In sand-dust environments, the low quality of images captured outdoors adversely affects many remote-based image processing and computer vision systems, because of severe color casts, low contrast, and poor visibility of sand-dust images. In such cases, conventional color correction methods do not guarantee appropriate performance in outdoor computer vision applications. In this paper, we present a novel color correction and dehazing algorithm for sand-dust image enhancement. First, we propose an effective color correction method that preserves the consistency of the chromatic variances and maintains the coincidence of the chromatic means. Next, a transmission map for image dehazing is estimated using the gamma correction for the enhancement of color-corrected sand-dust images. Finally, a cross-correlation-based chromatic histogram shift algorithm is proposed to reduce the reddish artifacts in the enhanced images. We performed extensive experiments for various sand-dust images and compared the performance of the proposed method to that of several existing state-of-the-art enhancement methods. The simulation results indicated that the proposed enhancement scheme outperforms the existing approaches in terms of both subjective and objective qualities.

8.
Sensors (Basel) ; 21(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922365

RESUMO

Intelligent systems for interior lighting strive to balance economical, ecological, and health-related needs. For this purpose, they rely on sensors to assess and respond to the current room conditions. With an augmented demand for more dedicated control, the number of sensors used in parallel increases considerably. In this context, the present work focuses on optical sensors with three spectral channels used to capture color-related information of the illumination conditions such as their chromaticities and correlated color temperatures. One major drawback of these devices, in particular with regard to intelligent lighting control, is that even same-type color sensors show production related differences in their color registration. Standard methods for color correction are either impractical for large-scale production or they result in large colorimetric errors. Therefore, this article shows the feasibility of a novel sensor binning approach using the sensor responses to a single white light source for cluster assignment. A cluster specific color correction is shown to significantly reduce the registered color differences for a selection of test stimuli to values in the range of 0.003-0.008 Δu'v', which enables the wide use of such sensors in practice and, at the same time, requires minimal additional effort in sensor commissioning.


Assuntos
Colorimetria , Iluminação , Cor , Luz , Estimulação Luminosa
9.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142901

RESUMO

Quality smartphone cameras and affordable dermatoscopes have enabled teledermoscopy to become a popular medical and veterinary tool for analyzing skin lesions such as melanoma and erythema. However, smartphones acquire images in an unknown RGB color space, which prevents a standardized colorimetric skin analysis. In this work, we supplemented a typical veterinary teledermoscopy system with a conventional color calibration procedure, and we studied two mid-priced smartphones in evaluating native and erythematous canine skin color. In a laboratory setting with the ColorChecker, the teledermoscopy system reached CIELAB-based color differences ΔE of 1.8-6.6 (CIE76) and 1.1-4.5 (CIE94). Intra- and inter-smartphone variability resulted in the color differences (CIE76) of 0.1, and 2.0-3.9, depending on the selected color range. Preliminary clinical measurements showed that canine skin is less red and yellow (lower a* and b* for ΔE of 10.7) than standard Caucasian human skin. Estimating the severity of skin erythema with an erythema index led to errors between 0.5-3%. After constructing a color calibration model for each smartphone, we expedited clinical measurements without losing colorimetric accuracy by introducing a simple image normalization on a white standard. To conclude, the calibrated teledermoscopy system is fast and accurate enough for various colorimetric applications in veterinary dermatology.


Assuntos
Dermoscopia/instrumentação , Eritema/veterinária , Pele/diagnóstico por imagem , Smartphone , Animais , Cor , Doenças do Cão/diagnóstico por imagem , Cães , Eritema/diagnóstico por imagem , Humanos , Melanoma/diagnóstico por imagem , Melanoma/veterinária
10.
J Exp Biol ; 222(Pt 18)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558610

RESUMO

We examined extremely low-reflectance, velvety black plumage patches in 32 bird species from 15 families and five orders and compared them with 22 closely related control species with normal black plumage. We used scanning electron microscopy to investigate microscopic feather anatomy, and applied spectrophotometry and hyperspectral imaging to measure plumage reflectance. Super black plumages are significantly darker and have more broadband low reflectance than normal black plumages, and they have evolved convergently in 15 avian families. Super black feather barbules quantitatively differ in microstructure from normal black feathers. Microstructural variation is significantly correlated with reflectance: tightly packed, strap-shaped barbules have lower reflectance. We assigned these super black feathers to five heuristic classes of microstructure, each of which has evolved multiple times independently. All classes have minimal exposed horizontal surface area and 3D micrometer-scale cavities greater in width and depth than wavelengths of light. In many species, barbule morphology varied between the super black exposed tip of a feather and its (i) concealed base or (ii) iridescently colored spot. We propose that super black plumages reduce reflectance, and flatten reflectance spectra, through multiple light scattering between the vertically oriented surfaces of microscale cavities, contributing to near-complete absorption of light by melanin. All super black plumage patches identified occur adjacent to brilliant colored patches. Super black plumage lacks all white specular reflections (reference points used to calibrate color perception), thus exaggerating the perceived brightness of nearby colors. We hypothesize that this sensory bias is an unavoidable by-product of color correction in variable light environments.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Cor , Plumas/ultraestrutura , Animais , Aves/classificação , Microscopia Eletrônica de Varredura , Imagem Óptica , Fenômenos Ópticos , Espectrofotometria
11.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888303

RESUMO

In the shallow-water environment, underwater images often present problems like color deviation and low contrast due to light absorption and scattering in the water body, but for deep-sea images, additional problems like uneven brightness and regional color shift can also exist, due to the use of chromatic and inhomogeneous artificial lighting devices. Since the latter situation is rarely studied in the field of underwater image enhancement, we propose a new model to include it in the analysis of underwater image degradation. Based on the theoretical study of the new model, a comprehensive method for enhancing underwater images under different illumination conditions is proposed in this paper. The proposed method is composed of two modules: color-tone correction and fusion-based descattering. In the first module, the regional or full-extent color deviation caused by different types of incident light is corrected via frequency-based color-tone estimation. And in the second module, the residual low contrast and pixel-wise color shift problems are handled by combining the descattering results under the assumption of different states of the image. The proposed method is experimented on laboratory and open-water images of different depths and illumination states. Qualitative and quantitative evaluation results demonstrate that the proposed method outperforms many other methods in enhancing the quality of different types of underwater images, and is especially effective in improving the color accuracy and information content in badly-illuminated regions of underwater images with non-uniform illumination, such as deep-sea images.

12.
Sensors (Basel) ; 17(1)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28025481

RESUMO

In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas.

13.
J Med Syst ; 40(1): 18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26525056

RESUMO

BACKGROUND: An automatic tongue diagnosis framework is proposed to analyze tongue images taken by smartphones. Different from conventional tongue diagnosis systems, our input tongue images are usually in low resolution and taken under unknown lighting conditions. Consequently, existing tongue diagnosis methods cannot be directly applied to give accurate results. MATERIALS AND METHODS: We use the SVM (support vector machine) to predict the lighting condition and the corresponding color correction matrix according to the color difference of images taken with and without flash. We also modify the state-of-the-art work of fur and fissure detection for tongue images by taking hue information into consideration and adding a denoising step. RESULTS: Our method is able to correct the color of tongue images under different lighting conditions (e.g. fluorescent, incandescent, and halogen illuminant) and provide a better accuracy in tongue features detection with less processing complexity than the prior work. CONCLUSIONS: In this work, we proposed an automatic tongue diagnosis framework which can be applied to smartphones. Unlike the prior work which can only work in a controlled environment, our system can adapt to different lighting conditions by employing a novel color correction parameter estimation scheme.


Assuntos
Cor , Aumento da Imagem/instrumentação , Medicina Tradicional Chinesa/instrumentação , Smartphone , Máquina de Vetores de Suporte , Língua/fisiopatologia , Humanos , Iluminação , Análise de Regressão
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124350, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692108

RESUMO

Smartphone-based digital image colorimetry is a powerful, fast, low-cost approach to detecting target analytes. However, lighting conditions and camera parameters easily affect the detection results, significantly curtailing its applicability in multiple scenarios. In this study, an Android-based mobile application (SMP-CC) is developed, which offers a comprehensive package that includes image acquisition, color correction, and colorimetric analysis functions. Using a custom color card, a built-in algorithm in SMP-CC can minimize the color difference between the standard color block image captured by different smartphones under different lighting conditions and the standard value by an LS171 colorimeter less than 4.36. The algorithm significantly eliminates the impacts of external lighting conditions and differences in cell phone models. Furthermore, the feasibility of SMP-CC was verified by successful colorimetric detection of urine pH, glucose, and protein, demonstrating its potential in smartphone-based digital image colorimetry.

15.
Data Brief ; 46: 108780, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478685

RESUMO

Color QR Codes are often generated to encode digital information, but one also could use colors or to allocate colors in a QR Code to act as a color calibration chart. In this dataset, we present several thousand QR Codes images generated with two different colorization algorithms (random and back-compatible) and several tuning variables in these color encoding. The QR Codes were also exposed to three different channel conditions (empty, augmentation and real-life). Also, we derive the SNR and BER computations for these QR Code in comparison with their black and white versions. Finally, we also show if ZBar, a commercial QR Code scanner, is able to read them.

16.
Heliyon ; 9(4): e14442, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025801

RESUMO

Light is scattered and partially absorbed while traveling through water, hence, underwater captured images often exhibit issues such as low contrast, detail blurring, color attenuation, and low illumination. To improve the visual performance of underwater imaging, herein, we propose a two-step method of zero-shot dehazing and level adjustment. In the newly developed approach, the original image is fed into a "zero-shot" dehazing network and further enhanced by an improved level adjustment methodology combined with auto-contrast. By conducting experiments, we then compare the performance of the proposed method with six classical state-of-the-art methods. The qualitative results confirm that the proposed method is capable of effectively removing haze, correcting color deviations, and maintaining the naturalness of images. We further perform a quantitative evaluation, revealing that the proposed method outperforms the comparison methods in terms of peak signal-to-noise ratio and structural similarity. The enhancement results are also measured by employing the underwater color image quality evaluation index (UCIQE), indicating that the proposed approach exhibits the highest mean values of 0.58 and 0.53 on the two data sets. The experimental results collectively validate the efficiency of the proposed methodology in enhancing underwater blurred images.

17.
J Imaging ; 7(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39080903

RESUMO

Cultural heritage preservation is a crucial topic for our society. When dealing with fine art, color is a primary feature that encompasses much information related to the artwork's conservation status and to the pigments' composition. As an alternative to more sophisticated devices, the analysis and identification of color pigments may be addressed via a digital camera, i.e., a non-invasive, inexpensive, and portable tool for studying large surfaces. In the present study, we propose a new supervised approach to camera characterization based on clustered data in order to address the homoscedasticity of the acquired data. The experimental phase is conducted on a real pictorial dataset, where pigments are grouped according to their chromatic or chemical properties. The results show that such a procedure leads to better characterization with respect to state-of-the-art methods. In addition, the present study introduces a method to deal with organic pigments in a quantitative visual approach.

18.
J Biomed Opt ; 26(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33583152

RESUMO

SIGNIFICANCE: Rehabilitation through facial prostheses' main goal is to aid individual's social reintegration as well as improving their quality of life. However, this treatment is not yet widely available in Brazil due to the lack of specialized clinics and the cost associated with the high number of necessary medical appointments until the final result. One of the steps in the process consists of measuring skin color, which is observer-dependent and may suffer from the effect of metamerism. AIM: The methodology of our work aims to obtain a standard between different devices and greater fidelity to the color seen in person in order to reduce face-to-face iterations, reduce costs, and ensure better final results. APPROACH: A physical device and a computer program were improved from previous projects. The changes included implementing the Thin-Plate Spline 3D algorithm for color calibration, in addition to an optional non-uniform illumination correction in the process. We also aim to improve the project's accessibility using a colorimeter. The methodology and the algorithms were both compared to readings from direct skin measurements as well as color references. RESULTS: After processing, the ΔEab* metric between images from the same segments is taken with different cameras and conditions of illumination decreased from 18.81 ± 4.85 to 4.85 ± 1.72. In addition, when the images were compared to colorimetric readings of the skin, the difference went from 14.93 ± 4.11 to 5.85 ± 1.61. It was also observed that using a less expensive device did not impact the readings. The project is open source and available at Github. CONCLUSIONS: The results demonstrate the possibility of applying the methodology to assist in the manufacturing of facial prostheses to decrease the total number of consultations, in addition to providing greater reliability of the final result.


Assuntos
Qualidade de Vida , Pele , Calibragem , Cor , Humanos , Próteses e Implantes , Reprodutibilidade dos Testes
19.
J Imaging ; 7(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34677293

RESUMO

This paper presents a three-color balance adjustment for color constancy correction. White balancing is a typical adjustment for color constancy in an image, but there are still lighting effects on colors other than white. Cheng et al. proposed multi-color balancing to improve the performance of white balancing by mapping multiple target colors into corresponding ground truth colors. However, there are still three problems that have not been discussed: choosing the number of target colors, selecting target colors, and minimizing error which causes computational complexity to increase. In this paper, we first discuss the number of target colors for multi-color balancing. From our observation, when the number of target colors is greater than or equal to three, the best performance of multi-color balancing in each number of target colors is almost the same regardless of the number of target colors, and it is superior to that of white balancing. Moreover, if the number of target colors is three, multi-color balancing can be performed without any error minimization. Accordingly, we propose three-color balancing. In addition, the combination of three target colors is discussed to achieve color constancy correction. In an experiment, the proposed method not only outperforms white balancing but also has almost the same performance as Cheng's method with 24 target colors.

20.
Comput Methods Programs Biomed ; 174: 51-64, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29307471

RESUMO

Tongue features are important objective basis for clinical diagnosis and treatment in both western medicine and Chinese medicine. The need for continuous monitoring of health conditions inspires us to develop an automatic tongue diagnosis system based on built-in sensors of smartphones. However, tongue images taken by smartphone are quite different in color due to various lighting conditions, and it consequently affects the diagnosis especially when we use the appearance of tongue fur to infer health conditions. In this paper, we captured paired tongue images with and without flash, and the color difference between the paired images is used to estimate the lighting condition based on the Support Vector Machine (SVM). The color correction matrices for three kinds of common lights (i.e., fluorescent, halogen and incandescent) are pre-trained by using a ColorChecker-based method, and the corresponding pre-trained matrix for the estimated lighting is then applied to eliminate the effect of color distortion. We further use tongue fur detection as an example to discuss the effect of different model parameters and ColorCheckers for training the tongue color correction matrix under different lighting conditions. Finally, in order to demonstrate the potential use of our proposed system, we recruited 246 patients over a period of 2.5 years from a local hospital in Taiwan and examined the correlations between the captured tongue features and alanine aminotransferase (ALT)/aspartate aminotransferase (AST), which are important bio-markers for liver diseases. We found that some tongue features have strong correlation with AST or ALT, which suggests the possible use of these tongue features captured on a smartphone to provide an early warning of liver diseases.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Medicina Tradicional Chinesa/métodos , Smartphone , Máquina de Vetores de Suporte , Língua/fisiopatologia , Algoritmos , Cor , Diagnóstico por Computador/métodos , Desenho de Equipamento , Humanos , Iluminação , Hepatopatias/diagnóstico , Hepatopatias/fisiopatologia , Taiwan , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA