Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(6): e2205696, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36403241

RESUMO

Metallic micro/nano structures with special physicochemical properties have undergone rapid development owing to their broad applications in micromachines and microdevices. Ultrafast laser processing is generally accepted as an effective technology for functional structures manufacture, however, the controllable fabrication of specific metallic micro/nano structures remains a challenge. Here, this work proposes a novel strategy of laser induced transient solid-liquid transition to fabricate unique structures. Through modulating the transient state of metal from solid to liquid phase using the initial pulse excitation, the subsequent ultrafast pulse-induced recoil pressure can suppress the plasma emission and removal of liquid phase metals, resulting in the controllable fabrication of coffee-ring structures. The solid-liquid transition dynamics, which related with the transient reflectivity and plasma intensity, are revealed by established two temperature model coupled with molecular dynamics model. The coffee-ring structure exhibits tunable structure color owing to various optical response, which can be used for color printing with large scale and high resolution. This work provides a promising strategy for fabricating functional micro/nano structures, which can greatly broaden the potential applications.

2.
Proc Natl Acad Sci U S A ; 116(28): 13791-13798, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31182585

RESUMO

Plasmons, the collective oscillations of mobile electrons in metallic nanostructures, interact strongly with light and produce vivid colors, thus offering a new route to develop color printing technologies with improved durability and material simplicity compared with conventional pigments. Over the last decades, researchers in plasmonics have been devoted to manipulating the characteristics of metallic nanostructures to achieve unique and controlled optical effects. However, before plasmonic nanostructures became a science, they were an art. The invention of the daguerreotype was publicly announced in 1839 and is recognized as the earliest photographic technology that successfully captured an image from a camera, with resolution and clarity that remain impressive even by today's standards. Here, using a unique combination of daguerreotype artistry and expertise, experimental nanoscale surface analysis, and electromagnetic simulations, we perform a comprehensive analysis of the plasmonic properties of these early photographs, which can be recognized as an example of plasmonic color printing. Despite the large variability in size, morphology, and material composition of the nanostructures on the surface of a daguerreotype, we are able to identify and characterize the general mechanisms that give rise to the optical response of daguerreotypes. Therefore, our results provide valuable knowledge to develop preservation protocols and color printing technologies inspired by past ones.

3.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433464

RESUMO

Based on previous visual assessments of 440 color pairs of 3D-printed samples, we tested the performance of eight color-difference formulas (CIELAB, CIEDE2000, CAM02-LCD, CAM02-SCD, CAM02-UCS, CAM16-LCD, CAM16-SCD, and CAM16-UCS) using the standardized residual sum of squares (STRESS) index. For the whole set of 440 color pairs, the introduction of kL (lightness parametric factor), b (exponent in total color difference), and kL + b produced an average STRESS decrease of 2.6%, 26.9%, and 29.6%, respectively. In most cases, the CIELAB formula was significantly worse statistically than the remaining seven formulas, for which no statistically significant differences were found. Therefore, based on visual results using 3D-object colors with the specific shape, size, gloss, and magnitude of color differences considered here, we concluded that the CIEDE2000, CAM02-, and CAM16-based formulas were equivalent and thus cannot recommend only one of them. Disregarding CIELAB, the average STRESS decreases in the kL + b-optimized formulas from changes in each one of the four analyzed parametric factors were not statistically significant and had the following values: 6.2 units changing from color pairs with less to more than 5.0 CIELAB units; 2.9 units changing the shape of the samples (lowest STRESS values for cylinders); 0.7 units changing from nearly-matte to high-gloss samples; and 0.5 units changing from 4 cm to 2 cm samples.


Assuntos
Impressão Tridimensional , Humanos , Cor , Progressão da Doença
4.
Nano Lett ; 20(9): 6344-6350, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32816490

RESUMO

In this paper, we propose a polarization-selective color filter that can generate two different color informations simultaneously depending on the polarization direction. The proposed color filter is mainly composed of the etalon structure to generate the color by the structural resonance properties while the upper layer of the etalon is made of plasmonic nanogratings to promote polarization-dependent color properties. When the duty ratio of the silver nanogratings is fixed, the proposed color filter can maintain identical optical properties for orthogonal polarization, while the etalon structure of the proposed color filter can manipulate different color information depending on the cavity height for the horizontal polarization. Finally, we experimentally confirm that polarization-dependent security images can be generated using the proposed color filters with a fixed duty ratio of various nanograting arrays.

5.
Nano Lett ; 20(6): 4422-4429, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32392073

RESUMO

The direct patterning of colors using the bombardment of a focused beam of electrons onto a thin-film stack consisting of poly(methyl methacrylate) coated with a thin nickel film is demonstrated. This direct electron-beam color printing approach creates variations in the height of a Fabry-Perot (FP) cavity, resulting directly in a color print without the need for prepatterned substrates, distinct from some direct laser writing methods. Notably, the resolution of the color prints is defined by the electron beam. Height measurements with ∼5 nm accuracy through color image analysis of an electron-beam-patterned FP cavity were carried out. This technique also introduces a reflectance-based measurement of the point exposure function of a focused electron beam, aiding in rapid proximity effect corrections. In addition, the grayscale lithographic nature of this process was used to produce blazed gratings and could enable the fabrication of other 2.5D nanostructures with precise height control.

6.
Nano Lett ; 19(12): 8964-8971, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31693377

RESUMO

Metasurfaces possess the outstanding ability to tailor phase, amplitude, and even spectral responses of light with an unprecedented ultrahigh resolution and thus have attracted significant interest. Here, we propose and experimentally demonstrate a novel meta-device that integrates color printing and computer-generated holograms within a single-layer dielectric metasurface by modulating spectral and spatial responses at subwavelength scale, simultaneously. In our design, such metasurface appears as a microscopic color image under white light illumination, while encrypting two different holographic images that can be projected at the far-field when illuminated with red and green laser beams. We choose amorphous silicon dimers and nanofins as building components and use a modified parallel Gerchberg-Saxton algorithm to obtain multiple subholograms with arbitrary spatial shapes for image-indexed arrangements while avoiding the loss of phase information. Such a method can further extend the design freedom of metasurfaces. By exploiting spectral and spatial control at the level of individual pixels, multiple sets of independent information can be introduced into a single-layer device; the additional complexity and enlarged information capacity are promising for novel applications such as information security and anticounterfeiting.

7.
Nano Lett ; 17(12): 7500-7506, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29141150

RESUMO

An all-dielectric optical antenna supporting Mie resonances enables light confinement below the free-space diffraction limit. The Mie scattering wavelengths of the antenna depend on the structural geometry, which allows the antennas to be used for colored imprint images. However, there is still room for improving the spatial resolution, and new polarization-dependent color functionalities are highly desirable for realizing a wider color-tuning range. Here, we show all-dielectric color printing by means of dual-color pixels with a subwavelength-scale resolution. The simple nanostructures fabricated with monocrystalline silicon exhibit various brilliant reflection color by tuning the physical dimensions of each antenna. The designed nanostructures possess polarization-dependent properties that make it possible to create overlaid color images. The pixels will generate individual color even if operating as a single element, resulting in the achievement of subwavelength-resolution encoding without color mixing. This printing strategy could be used to further extend the degree of freedom in structural color design.

8.
Nano Lett ; 17(9): 5555-5560, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28721735

RESUMO

High-resolution multicolor printing based on pixelated optical nanostructures is of great importance for promoting advances in color display science. So far, most of the work in this field has been focused on achieving static colors, limiting many potential applications. This inevitably calls for the development of dynamic color displays with advanced and innovative functionalities. In this Letter, we demonstrate a novel dynamic color printing scheme using magnesium-based pixelated Fabry-Pérot cavities by gray scale nanolithography. With controlled hydrogenation and dehydrogenation, magnesium undergoes unique metal and dielectric transitions, enabling distinct blank and color states from the pixelated Fabry-Pérot resonators. Following such a scheme, we first demonstrate dynamic Ishihara plates, in which the encrypted images can only be read out using hydrogen as information decoding key. We also demonstrate a new type of dynamic color generation, which enables fascinating transformations between black/white printing and color printing with fine tonal tuning. Our work will find wide-ranging applications in full-color printing and displays, colorimetric sensing, information encryption and anticounterfeiting.

9.
Nano Lett ; 17(12): 7620-7628, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29115134

RESUMO

Localized optical resonances in metallic nanostructures have been increasingly used in color printing, demonstrating unprecedented resolution but limited in color gamut. Here, we introduce a new nanostructure design, which broadens the gamut while retaining print resolution. Instead of metals, silicon nanostructures that exhibit localized magnetic and electric dipole resonances were fabricated on a silicon substrate coated with a Si3N4 index matching layer. Index matching allows a suppression of substrate effects, thus enabling Kerker's conditions to be met, that is, sharpened transitions in the reflectance spectra leading to saturated colors. This nanostructure design achieves a color gamut superior to sRGB, and is compatible with CMOS processes. The presented design could enable compact high-resolution color displays and filters, and the use of a Si3N4 antireflection coating can be readily extended to designs with nanostructures fabricated using other high-index materials.

10.
Nano Lett ; 16(5): 3166-72, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27088992

RESUMO

Metallic nanostructures can be designed to effectively reflect different colors at deep-subwavelength scales. Such color manipulation is attractive for applications such as subwavelength color printing; however, challenges remain in creating saturated colors with a general and intuitive design rule. Here, we propose a simple design approach based on all-aluminum gap-plasmonic nanoantennas, which is capable of designing colors using knowledge of the optical properties of the individual antennas. We demonstrate that the individual-antenna properties that feature strong light absorption at two distinct frequencies can be encoded into a single subwavelength-pixel, enabling the creation of saturated colors, as well as a dark color in reflection, at the optical diffraction limit. The suitability of the designed color pixels for subwavelength printing applications is demonstrated by showing microscopic letters in color, the incident polarization and angle insensitivity, and color durability. Coupled with the low cost and long-term stability of aluminum, the proposed design strategy could be useful in creating microscale images for security purposes, high-density optical data storage, and nanoscale optical elements.

11.
Nano Lett ; 16(6): 3817-23, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27164410

RESUMO

We demonstrate a new plasmonic pixel (PP) design that produces a full-color optical response over macroscopic dimensions. The pixel design employs arrays of aluminum nanorods "floating" above their Babinet complementary screen, Concepts from conventional cyan magenta yellow key (CMYK) printing techniques and red green blue (RGB) digital displays are integrated with nanophotonic design principles and adapted to the production of PP elements. The fundamental PP color blocks of CMYK are implemented via a composite plasmonic nanoantenna/slot design and then mixed in a digital display analog 3 × 3 array to produce a broad-gamut PP. The PP goes beyond current investigations into plasmonic color production by enabling a broad color gamut and physically large plasmonic color features/devices/images. The use of nanorods also leads to a color response that is polarization tunable. Furthermore, devices are fabricated using aluminum and the fabrication strategy is compatible with inexpensive, rapid-throughput, nanoimprint approaches. Here we quantify, both computationally and experimentally, the performance of the PP. Spectral data from a test palette is obtained and a large area (>1.5 cm lateral dimensions) reproduction of a photograph is generated exemplifying the technqiue.

12.
Adv Mater ; 36(33): e2403304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861697

RESUMO

Diatom exoskeletons, known as frustules, exhibit a unique multilayer structure that has attracted considerable attention across interdisciplinary research fields as a source of biomorphic inspiration. These frustules possess a hierarchical porous structure, ranging from millimeter-scale foramen pores to nanometer-scale cribellum pores. In this study, this natural template for nanopattern design is leveraged to showcase metamaterials that integrates perfect absorption and subwavelength color printing. The cribellum-inspired hierarchical nanopatterns, organized in a hexagonal unit cell with a periodicity of 300 nm, are realized through a single-step electron beam lithography process. By employing numerical models, it is uncovered that an additional induced collective dipole mode is the key mechanism responsible for achieving outstanding performance in absorption, reaching up to 99%. Analysis of the hierarchical organization reveals that variations in nanoparticle diameter and inter-unit-cell distance lead to shifts and broadening of the resonance peaks. It is also demonstrated that the hierarchical nanopatterns are capable of color reproduction with high uniformity and fidelity, serving as hexagonal pixels for high-resolution color printing. These cribellum-inspired metamaterials offer a novel approach to multifunctional metamaterial design, presenting aesthetic potential applications in the development of robotics and wearable electronic devices, such as smart skin or surface coatings integrated with energy harvesting functionalities.

13.
Materials (Basel) ; 16(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37629913

RESUMO

This work concerns the new idea of textile printing with a multi-color system using pastes containing compounds sensitive to ultraviolet (UV) radiation. A screen printing method based on a modified CMYK color system was applied to a cotton woven fabric. Aqueous printing pastes were prepared from thickening and crosslinking agents and UV-sensitive compounds: leuco crystal violet (LCV), leuco malachite green (LMG), and 2,3,5-triphenyltetrazolium chloride (TTC) instead of the system's standard process colors: cyan, magenta, and yellow. Depending on the number of printed layers and the type of UV radiation (UVA, UVB, and UVC), the modified textile samples change color after irradiation from white to a wide range of colors (from blue, red, and green to purple, brown, and gray). Based on reflectance measurements, the characteristic parameters of the one-, two-, and three-color-printed samples in relation to absorbed dose were determined, e.g., dose sensitivity, linear and dynamic dose response, and threshold dose. This printing method is a new proposal for UV dosimeters and an alternative standard for textile printing. Furthermore, the developed method can be used for the securing, marking, and creative design of textiles and opens up new possibilities for such stimulus-sensitive reactive printing.

14.
ACS Appl Mater Interfaces ; 14(26): 30315-30323, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732013

RESUMO

Plasmonic color printing has received significant attention owing to its advantages such as nonfading and nontoxic color expression, without necessitating the use of chemical dyes. Recently, color generation from laser-induced plasmonic nanostructures has been extensively explored because of its simplicity, cost-effectiveness, and large-scale processability. However, these methods usually utilize a top-down method that causes unexpected background colors. Here, we proposed a novel method of plasmonic color printing via a bottom-up type laser-induced photomodification process. In the proposed method, selective silver nanoparticles (Ag NPs) structure could be fabricated on a transparent substrate through a unique organometallic solution-based laser patterning process. A set of color palettes was formed on the basis of different processing parameters such as laser fluence, scanning speed, and baking time. This color change was verified by finite-difference time-domain (FDTD) simulations via monitoring the spectral peak shift of the localized surface plasmon resonance (LSPR) at Ag NPs. It was also confirmed that the colors can be fabricated at a relatively high scanning speed (≥10 mm/s) on a large substrate (>300 mm2). Since semitransparent color images can be patterned on various transparent substrates, this process will broaden the application range of laser-induced plasmonic color generation.

15.
ACS Nano ; 16(5): 8244-8252, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35533374

RESUMO

It remains a challenge to directly print arbitrary three-dimensional shapes that exhibit structural colors at the micrometer scale. Woodpile photonic crystals (WPCs) fabricated via two-photon lithography (TPL) are elementary building blocks to produce 3D geometries that generate structural colors due to their ability to exhibit either omnidirectional or anisotropic photonic stop bands. However, existing approaches produce structural colors on WPCs when illuminating from the top, requiring print resolutions beyond the limit of commercial TPL, which necessitates postprocessing techniques. Here, we devised a strategy to support high-order photonic cavity modes upon side illumination on WPCs that surprisingly generate prominent reflectance peaks in the visible spectrum. Based on that, we demonstrate one-step printing of 3D photonic structural colors without requiring postprocessing or subwavelength features. Vivid colors with reflectance peaks exhibiting a full width at half-maximum of ∼25 nm, a maximum reflectance of 50%, a gamut of ∼85% of sRGB, and large viewing angles were achieved. In addition, we also demonstrated voxel-level manipulation and control of colors in arbitrary-shaped 3D objects constituted with WPCs as unit cells, which has potential for applications in dynamic color displays, colorimetric sensing, anti-counterfeiting, and light-matter interaction platforms.

16.
Materials (Basel) ; 14(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557404

RESUMO

Color 3D printing allows for 3D-printed parts to represent 3D objects more realistically, but its surface color quality evaluation lacks comprehensive objective verification considering printing materials. In this study, a unique test model was designed and printed using eco-friendly and vivid paper-based full-color 3D printing as an example. By measuring the chromaticity, roughness, glossiness, and whiteness properties of 3D-printed surfaces and by acquiring images of their main viewing surfaces, this work skillfully explores the correlation between the color representation of a paper-based 3D-printed coloring layer and its attached underneath blank layer. Quantitative analysis was performed using ΔE*ab, feature similarity index measure of color image (FSIMc), and improved color-image-difference (iCID) values. The experimental results show that a color difference on color-printed surfaces exhibits a high linear correlation trend with its FSIMc metric and iCID metric. The qualitative analysis of microscopic imaging and the quantitative analysis of the above three surface properties corroborate the prediction of the linear correlation between color difference and image-based metrics. This study can provide inspiration for the development of computational coloring materials for additive manufacturing.

17.
ACS Nano ; 15(6): 10185-10193, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34019388

RESUMO

Colorful three-dimensional (3D) prints are promising as practical anticounterfeiting labels with easily recognizable and striking visual effects. However, existing colorful 3D displays either require specific illumination conditions with multiple coherent lasers, hence suffer from speckles, or are unsuitable as passive labels. Here, we report a concept of a virtual 3D color object consisting of colorful focal spots in free space. The colors and corresponding "floating heights" of these spots are independently controlled via the design of 3D printed microlens profiles and heights of nanopillars that act as structural-color filters. Despite the unremarkable appearance of the printed substrate under both optical and electron microscopy, illumination with incoherent white light reveals information in the form of bright colorful spots appearing at designated heights above the plane of the substrate. The term "optical fireworks" refers to the way these spots appear and disappear under an optical microscope as one continuously shifts the focal plane. Our 3D printed optical fireworks security labels introduce applications for optical elements integrated with nanostructures in 3D colorful displays and anticounterfeiting labels.

18.
Polymers (Basel) ; 12(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178335

RESUMO

Material jetting (MJ)-type 3D printers have been considered as one of the most versatile types of 3D printers, enabling full-color printing and multi-material printing. However, to the best of our knowledge, there are few academic studies on the development of full-color MJ technologies, and the formulation of commercial resins is confidential and proprietary. In this paper, we give an insight into the preparation of photocurable resins in the primary CMYKW (cyan, magenta, yellow, black, and white) colors that are printable with the multiple piezoelectric heads of our homemade MJ full-color 3D printer. The components comprising the resins, such as the photo-initiator, oligomers, monomers, and crosslinkers, were methodically adjusted and characterized to achieve high-performance MJ printable resins. Subsequently, the prepared resins were colored with the CMYKW colors and their ability of high-quality color appearance in full-color printing was demonstrated.

19.
ACS Appl Mater Interfaces ; 12(17): 19882-19889, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32227984

RESUMO

Use of colloidal suspensions to generate structural colors has the potential to reduce the use of toxic metals or organic pigments in inkjet printing, coatings, cosmetics, and other applications, and is a promising avenue to create large-scale nanostructures that produce long-lasting colors. However, expanded use of structural colors requires a reduction in coffee-ring effects during printing, which currently requires intricately patterned substrates or high particle concentrations, and diversification of colors to compete with conventional printing inks. Here, we treat substrate surfaces with cold plasma to facilitate spontaneous assembly of particles into colloidal nanostructures, reducing the need for highly concentrated particle suspensions. Moreover, by employing binary mixtures, we can tune the lightness of the hue produced or change the hue itself, allowing us to cover wider regions of color space. We demonstrate the use of this cold-plasma approach on a variety of substrates, favoring substrate diversity on which printing can be performed. This methodology enables creation of high-resolution, complex designs and opens a path for extending the limits of anticounterfeiting applications by using binary mixtures.

20.
ACS Nano ; 14(2): 1783-1791, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32003976

RESUMO

The ability of mixing colors with remarkable results had long been exclusive to the talents of master painters. By finely combining colors in different amounts on the palette, intuitively, they obtain smooth gradients with any given color. Creating such smooth color variations through scattering by the structural patterning of a surface, as opposed to color pigments, has long remained a challenge. Here, we borrow from the painter's approach and demonstrate color mixing generated by an optical metasurface. We propose a single-layer plasmonic color pixel and a method for nanophotonic structural color mixing based on the additive red-green-blue (RGB) color model. The color pixels consist of plasmonic nanorod arrays that generate vivid primary colors and enable independent control of color brightness without affecting chromaticity by simply varying geometric in-plane parameters. By interleaving different nanorod arrays, we combine up to three primary colors on a single pixel. Based on this, two- and three-color mixing is demonstrated, enabling the continuous coverage of a plasmonic RGB color gamut and yielding a palette with a virtually unlimited number of colors. With this multiresonant color pixel, we show the photorealistic printing of color and monochrome images at the nanoscale, with ultrasmooth transitions in color and brightness. Our color-mixing approach can be applied to a broad range of scatterer designs and materials and has the potential to be used for multiwavelength color filters and dynamic photorealistic displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA