Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nano Lett ; 24(23): 6997-7003, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38721805

RESUMO

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

2.
Biochem Biophys Res Commun ; 718: 150078, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735140

RESUMO

Among the environmental factors contributing to myopia, the role of correlated color temperature (CCT) of ambient light emerges as a key element warranting in-depth investigation. The choroid, a highly vascularized and dynamic structure, often undergoes thinning during the progression of myopia, though the precise mechanism remains elusive. The retinal pigment epithelium (RPE), the outermost layer of the retina, plays a pivotal role in regulating the transport of ion and fluid between the subretinal space and the choroid. A hypothesis suggests that variations in choroidal thickness (ChT) may be modulated by transepithelial fluid movement across the RPE. Our experimental results demonstrate that high CCT illumination significantly compromised the integrity of tight junctions in the RPE and disrupted chloride ion transport. This functional impairment of the RPE may lead to a reduction in fluid transfer across the RPE, consequently resulting in choroidal thinning and potentially accelerating axial elongation. Our findings provide support for the crucial role of the RPE in regulating ChT. Furthermore, we emphasize the potential hazards posed by high CCT artificial illumination on the RPE, the choroid, and refractive development, underscoring the importance of developing eye-friendly artificial light sources to aid in the prevention and control of myopia.


Assuntos
Cloretos , Corioide , Transporte de Íons , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Epitélio Pigmentado da Retina/patologia , Corioide/metabolismo , Corioide/efeitos da radiação , Corioide/patologia , Animais , Transporte de Íons/efeitos da radiação , Cloretos/metabolismo , Iluminação/métodos , Temperatura , Cor , Junções Íntimas/metabolismo , Miopia/metabolismo , Miopia/patologia , Miopia/etiologia
3.
J Exp Biol ; 227(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873751

RESUMO

The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.


Assuntos
Ritmo Circadiano , Luz , Iluminação , Animais , Camundongos/fisiologia , Masculino , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Feminino , Comportamento Animal/efeitos da radiação , Comportamento Animal/fisiologia , Atividade Motora/efeitos da radiação , Temperatura
4.
BMC Med Educ ; 24(1): 415, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627740

RESUMO

BACKGROUND: Suture knotting is the basis of surgical skills. In the process of surgical skills learning, the surrounding environment, especially the light, will affect the efficiency of learning. This study investigated the effect of optical environment on the learning of stitching and knotting skills. METHODS: A total of 44 medical students were randomly divided into four groups and participated in the study of suture knotting in four different optical environments. During the process, we assess objective pressure level by testing salivary amylase activity Likert scale and objective structured clinical examination (OSCE) was used to estimate the subjective psychological state and overall skill mastery in surgical suturing respectively. RESULTS: Under high illumination conditions (700 lx), the salivary amylase activity of the high color temperature group (6000 K) was significantly higher than that of the low color temperature group (4000 K) (p < 0.0001). Similarly, under low illumination (300 lx), the salivary amylase activity of the high color temperature group was also significantly higher than that of the low color temperature group (p < 0.05). The student under high illumination conditions (700 lx) and the low color temperature (6000 K) have an autonomy score between 37-45, which is significantly higher compared to the other three groups (p < 0.0001). Group 2 has an average OSCE score of 95.09, which were significantly higher than those of the other three groups (p < 0.05). CONCLUSION: High illumination combined with low color temperature is considered as the optimal training conditions, promoting trainees' optimism, reducing stress levels, and enhancing learning efficiency. These results highlight the pivotal role of light environment in improving the quality and efficiency of surgical skills training.


Assuntos
Aprendizagem , Exame Físico , Humanos , Amilases , Competência Clínica , Técnicas de Sutura/educação
5.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679678

RESUMO

The light intensity and color temperature of natural light periodically change and promote the circadian entrainment of the human body. In addition, the color temperature cycle of natural light that is unique to each region is formed by its location and geographic and environmental factors, affecting the health of its residents. Research on lighting and construction to provide the color temperature of real-time natural light has continued to provide the beneficial effect of natural indoor lighting. However, lighting technology that provides the real-time color temperature of natural light could not be realized since it is challenging to select a color temperature cycle zone due to abrupt color temperature changes at sunrise and sunset. Such drastic shifts cause an irregular measurement of color temperature over time due to general weather or atmospheric conditions. In a previous study, a method of generating a color temperature cycle using deep learning was introduced, but the performance at the beginning and end of the color temperature cycle was unreliable. Therefore, this study proposes generating a real-time natural light color temperature cycle for the circadian lighting service. The characteristics of the daily color temperature cycle were analyzed based on the measured natural light characteristics database, and a data set for learning was established. To improve the color temperature cycle generation performance, a deep learning (TadGAN) model was implemented by searching for the lowest point of the color temperature at the start and end points of the color temperature cycle and applying the boot and ending datasets to these points. The color temperature cycle zone was accurately detected in real-time in the experiment, and the generation performance of the color temperature cycle was maintained at the beginning and end of the color temperature cycle. The mean absolute error decreased by about 67%, confirming the generation of a more accurate real-time color temperature cycle.


Assuntos
Luz , Iluminação , Humanos , Temperatura , Temperatura Corporal , Clima , Ritmo Circadiano , Cor
6.
J Therm Biol ; 112: 103488, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796929

RESUMO

When exposed to ambient temperatures that cause thermal discomfort, a human's behavioral responses are more effective than autonomic ones at compensating for thermal imbalance. These behavioral thermal responses are typically directed by an individual's perception of the thermal environment. Perception of the environment is a holistic amalgamation of human senses, and in some circumstances, humans prioritize visual information. Existing research has considered this in the specific case of thermal perception, and this review investigates the state of the literature examining this effect. We identify the frameworks, research rationales, and potential mechanisms that underpin the evidence base in this area. Our review identified 31 experiments, comprising 1392 participants that met the inclusion criteria. Methodological heterogeneity was observed in the assessment of thermal perception, and a variety of methods were employed to manipulate the visual environment. However, the majority of the included experiments (80%) reported a difference in thermal perception after the visual environment was manipulated. There was limited research exploring any effects on physiological variables (e.g. skin and core temperature). This review has wide-ranging implications for the broad discipline of (thermo)physiology, psychology, psychophysiology, neuroscience, ergonomics, and behavior.


Assuntos
Regulação da Temperatura Corporal , Percepção , Humanos , Regulação da Temperatura Corporal/fisiologia , Pele , Sensação Térmica/fisiologia , Sistema Nervoso Autônomo
7.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902225

RESUMO

Low-color-temperature light-emitting diodes (LEDs) (called 1900 K LEDs for short) have the potential to become a healthy light source due to their blue-free property. Our previous research demonstrated that these LEDs posed no harm to retinal cells and even protected the ocular surface. Treatment targeting the retinal pigment epithelium (RPE) is a promising direction for age-related macular degeneration (AMD). Nevertheless, no study has evaluated the protective effects of these LEDs on RPE. Therefore, we used the ARPE-19 cell line and zebrafish to explore the protective effects of 1900 K LEDs. Our results showed that the 1900 K LEDs could increase the cell vitality of ARPE-19 cells at different irradiances, with the most pronounced effect at 10 W/m2. Moreover, the protective effect increased with time. Pretreatment with 1900 K LEDs could protect the RPE from death after hydrogen peroxide (H2O2) damage by reducing reactive oxygen species (ROS) generation and mitochondrial damage caused by H2O2. In addition, we preliminarily demonstrated that irradiation with 1900 K LEDs in zebrafish did not cause retinal damage. To sum up, we provide evidence for the protective effects of 1900 K LEDs on the RPE, laying the foundation for future light therapy using these LEDs.


Assuntos
Antioxidantes , Epitélio Pigmentado da Retina , Animais , Epitélio Pigmentado da Retina/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos da radiação , Peixe-Zebra/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Luz
8.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616893

RESUMO

Soil color is commonly used as an indicator to classify soil and identify its properties. However, color-based soil assessments are susceptible to variations in light conditions and the subjectivity of visual evaluations. This study proposes a novel method of calibrating digital images of soil, regardless of lighting conditions, to ensure accurate identification. Two different color space models, RGB and CIELAB, were assessed in terms of their potential utility in calibrating changes to soil color in digital images. The latter system was determined to be suitable, as a result of its ability to accurately reflect illuminance and color temperature. Linear regression equations relating soil color and light conditions were developed based on digital images of four different types of soil samples, each photographed under 15 different light conditions. The proposed method can be applied to calibrate variations in the soil color obtained by digital images, thus allowing for more standardized, objective, and accurate classification and evaluation of soil based on its color.


Assuntos
Iluminação , Solo , Cor , Calibragem , Temperatura
9.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298124

RESUMO

This study to develop lighting is advanced for reproducing natural light color temperature beneficial to humans. Methods were introduced to provide daily color temperature cycles through formulas based on the measured natural light characteristics or real-time reproduction of natural light color temperature linking sensors. Analysis results for the measured natural light showed that irregular color temperature cycles were observed for more than 90% of the year due to the influence of regional weather and atmospheric conditions. Regular color temperature cycles were observed only on some clear days. The color temperature cycle dramatically affects the health of the occupants. However, since irregular color temperatures are difficult to predict and cannot easily generate cycles, only the color temperatures of some clear days are currently used, and the actual color temperature of natural light cannot be reproduced. There is little research on deriving real-time periodic characteristics and lighting services targeting irregular color temperatures of natural light. Therefore, this paper proposes a TadGAN (Time Series Anomaly Detection Using Generative Adversarial Networks)-based daily color temperature cycle generation method that responds to irregular changes in the natural light color temperature. A TadGAN model for generating the natural light color temperature cycle was built, and learning was performed based on the dataset extracted through the measured natural light characteristic Database. After that, the generator of TadGAN was repeatedly applied to generate a color temperature cycle close to the change of natural light. In the performance test of the proposed method, it was possible to generate periodic characteristics of the irregular natural light color temperature distribution.


Assuntos
Luz , Iluminação , Humanos , Temperatura , Iluminação/métodos , Fatores de Tempo , Cor
10.
Small ; 17(52): e2104551, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729915

RESUMO

Carbon dots (CDs) as one of the most promising carbon-based nanomaterials are inspiring extensive research in optoelectronic applications. White-light-emitting diodes (WLEDs) with tunable correlated color temperatures (CCTs) are crucial for applications in white lighting. However, the development of high-performance CDs-based electroluminescent WLEDs, especially those with adjustable CCTs, remains a challenge. Herein, white CDs-LEDs with CCTs from 2863 to 11 240 K are successfully demonstrated by utilizing aggregation-induced emission red-shifting and broadening of CDs. As a result, a series of warm white, pure white, and cold white CDs-LEDs are realized with adjustable emissions in sequence along the blackbody radiation curve. These CDs-LEDs reach maximum brightness and external quantum efficiency up to 1414-4917 cd m-2 and 0.08-0.87%, respectively, which is among the best performances of white CDs-LEDs. To the best of the authors' knowledge, this is the first time that CCT-tunable white electroluminescent CDs-LEDs are demonstrated through controlling the aggregation degrees of CDs.

11.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218101

RESUMO

The characteristics of natural light are mostly collected through specialized measuring equipment, such as a spectroradiometer, and some suggested measurement methods through a small RGB sensor. However, specialized measuring equipment presents difficulty in its high cost, and the RGB-sensor-based method has the limitation of being unable to measure the wavelength characteristics of natural light that are needed to implement lighting that supports circadian rhythms. This paper presents a method for calculating the short-wavelength-ratio-based color temperature of natural light in real time. First, an analysis of the correlation between the characteristics of natural light collected through a spectroradiometer was performed to determine the factors that were needed to accurately measure the color temperature of natural light. Then, the short-wavelength ratio of natural light was calculated through chromaticity coordinates (x and y), which are output values of the RGB sensor, and an equation for calculating the color temperature of natural light was derived through the short-wavelength ratio. Furthermore, after producing an RGB-sensor-based device, the derived equation was applied to calculate the color temperature of real-time natural light that reflects the wavelength characteristics. Then, as a result of the performance evaluation of the proposed method, the color temperature of natural light was accurately calculated within 1% of the average error rate.

12.
Small ; 15(44): e1903496, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31489786

RESUMO

Recently, Bi-doped Cs2 Ag0.6 Na0.4 InCl6 lead-free double perovskites demonstrating efficient warm-white emission have been reported. To enable the solution processing and enrich the application fields of this promising material, here a colloidal synthesis of Cs2 Ag1- x Nax In1- y Biy Cl6 nanocrystals is further developed. Different from its bulk states, the emission color temperatures of the nanocrystal can be tuned from 9759.7 to 4429.2 K by Na+ and Bi3+ incorporation. Furthermore, the newly developed nanocrystals can break the wavefunction symmetry of the self-trapped excitons by partial replacement of Ag+ ions with Na+ ions and consequently allow radiative recombination. Assisted with Bi3+ ions doping and ligand passivation, the photoluminescence quantum yield of the Cs2 Ag0.17 Na0.83 In0.88 Bi0.12 Cl6 nanocrystals is further promoted to 64%, which is the highest value for lead-free perovskite nanocrystals at present. The new colloidal nanocrystals with tunable color temperature and efficient photoluminescence are expected to greatly advance the research progress of lead-free perovskites in single-emitter-based white emitting materials and devices.

13.
Medicina (Kaunas) ; 55(11)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717519

RESUMO

Background and Objectives: Physical function is influenced by light irradiation, and interest in the influence of light irradiation on health is high. Light signals are transmitted from the retina to the suprachiasmatic nucleus (SCN) via the retinal hypothalamic tract as non-image vision. Additionally, the SCN projects a nerve to the paraventricular nucleus (PVN) which acts as a stress center. This study examined the influences of three different light sources on neural activity in the PVN region using two different color temperatures. Materials and Methods: Experiments were conducted using twenty-eight Institute of Cancer Research (ICR) mice (10 week old males). Three light sources were used: (1) organic light-emitting diode (OLED) lighting, (2) LED lighting, and (3) fluorescent lighting. We examined the effects of light irradiation from the three light sources using two different color temperatures (2800 K and 4000 K). Perfusion was done 60 min after light irradiation, and then the brain was removed from the mouse for an immunohistochemistry analysis. c-Fos was immunohistochemically visualized as a marker of neural activity in the PVN region. Results: The number of c-Fos-positive cells was found to be significantly lower under OLED lighting and LED lighting conditions than under fluorescent lighting at a color temperature of 2800 K, and significantly lower under OLED lighting than LED lighting conditions at a color temperature of 4000 K. Conclusions: This study reveals that different light sources and color temperatures alter the neural activity of the PVN region. These results suggest that differences in the light source or color temperature may affect the stress response.


Assuntos
Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Estimulação Luminosa/métodos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Núcleo Hipotalâmico Paraventricular/anormalidades , Espectrofotometria/métodos
14.
J Fluoresc ; 28(1): 453-464, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29340867

RESUMO

Eu3+ doped and Dy3+ codoped yttrium oxide (Y2O3) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y2O3:Dy3+, Eu3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu3+doped and Dy3+codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10- 1 to 18.608 × 10- 1 eV.

15.
Indoor Air ; 28(6): 881-891, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30113746

RESUMO

Expanding the acceptable range of indoor temperatures allows to reduce building energy consumption and may be beneficial for health. Therefore, we explored whether light conditions can be used to influence thermal perception under various ambient temperatures. In two laboratory experiments, we tested the effect of the correlated color temperature of light (2700 K and 5800 K) and its intensity (5 and 1200 lux) on thermal perception. The light exposures were provided during cool, neutral, and warm thermal conditions. Cold-induced perceived shivering was higher for the 5800 K light exposure. All other parameters related to thermal perception did not significantly differ between the light exposures. Interestingly, the other way around, an increasing ambient temperature resulted in a warmer perception of the light color. In every light condition, it appeared that the perceived light intensity was closest to neutral under the thermoneutral condition. Between different light sessions, the change in visual comfort and the change in thermal comfort were positively related. The main conclusion therefore is that thermal discomfort can be partly compensated by lighting that results in a higher perceived visual comfort. Field studies are required to demonstrate whether lighting can enable new strategies to improve indoor environmental workplace satisfaction.


Assuntos
Iluminação/métodos , Percepção , Temperatura , Adolescente , Adulto , Feminino , Humanos , Inquéritos e Questionários , Local de Trabalho , Adulto Jovem
16.
Neurol Neurochir Pol ; 52(4): 505-513, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29559179

RESUMO

OBJECTIVE: The article represents the preliminary study, with the aim of the experiment being to examine whether different types of light sources used commonly in building interiors combined with various color temperature have an effect on EEG activity. The effect of frequency pulsation and color temperature on brain activity in EEG examinations in the beta 2 band was assumed. MATERIAL/PARTICIPANTS: Twenty healthy men aged 19-25 years participated in the experiment. METHODS: The research stand was lit by: LED diodes with color temperatures of 3000K, 4200K, 6500K, with the power supplied using the pulse width modulation (PWM) method with the current frequency of 122Hz, linear fluorescent tubes (3000K, 6500K), with the power supplied with the frequency of 50Hz and 52kHz from the electromagnetic and electronic ballasts, and the conventional light bulb, with the power supplied directly from the mains electricity, used as a reference light. System Flex 30 apparatus with TrueScan software was used to record the EEG signal. The examination used two factors (speed and accuracy) of the Kraepelin's work curve to describe changes in work performance for various types of lighting. RESULTS: The results demonstrate that the use of different types of emission of light and color temperature of the light have an effect on bioelectrical brain activity and work performance. CONCLUSIONS: The highest activity of brain waves concerns the beta band in the frequency range of 21-22Hz, regardless of the type of the light source (LED, fluorescent tube). The methods used to supply power and color temperature of fluorescent tubes do not significantly affect bioelectrical brain activity during "work", but previous lighting with fluorescent tubes during work has an essential effect on bioelectrical brain activity during rest. Regardless of the color temperature, LED lighting with PWM power supply leads to the highest bioelectrical activity (mainly in the range of 21-22Hz) in the brain during work and rest, which might suggests the usefulness of this method of supplying power for everyday work. Incandescent light does not affect the bioelectrical brain activity during work and rest.


Assuntos
Encéfalo , Fontes de Energia Elétrica , Adulto , Cor , Frequência Cardíaca , Humanos , Masculino , Temperatura , Adulto Jovem
17.
Artigo em Japonês | MEDLINE | ID: mdl-29925749

RESUMO

In Japan, medical liquid-crystal display (LCD) and general LCD monitors have color temperatures of 7500 and 6500 K, respectively. The differences in color temperature make it difficult for radiologists to judge whether the same color is being displayed on the monitor. Therefore, the radiologist may overlook lesions. We examined chromaticity on a color scale test pattern to determine the relationships between color temperature (6500-12,500 K) of the medical color LCD monitors, there are three types of fluorescent light and three types of illuminance LCD monitors. As the color temperature of the monitor increased, the variation in chromaticity for grayscale test patterns increased and those variations for the blue scale test patterns decreased in a dark room and at 600 lux. In addition, even if the color temperature of the monitor was changed, the variation in chromaticity showed no change under fluorescent lighting with light bulb color and daylight color. The results of this study will be useful for quality control and quality assurance of medical LCD monitors in terms of illuminance and color temperature of the monitor.


Assuntos
Apresentação de Dados , Cristais Líquidos , Cor , Japão , Controle de Qualidade , Temperatura
18.
Luminescence ; 31(1): 202-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26032295

RESUMO

The spectroscopic and photoluminescence characteristics of trivalent dysprosium (Dy(3+))-doped Sr0.5Ca0.5TiO3 phosphor materials synthesized via solid-state reaction method were studied. The X-ray diffraction profile confirmed the orthorhombic perovskite structure of the prepared samples. Judd-Ofelt analysis was carried out to obtain the intensity parameters and predicted radiative properties of Sr0.5Ca0.5TiO3:2wt%Dy(3+). The photoluminescence spectrum of Dy(3+)-doped Sr0.5Ca0.5TiO3 showed three emission peaks at 481, 574 and 638 nm corresponding to (4)F9/2 →(6)H15/2, (4)F9/2 →(6)H13/2 and (4)F9/2 →(6)H11/2 transitions respectively. The variation of luminescence intensity with different excitation wavelengths and Dy(3+) concentrations is discussed. The decay profiles of (4)F9/2 excited levels of Dy(3+) ions show bi-exponential behaviour and also a decrease in average lifetime with increase in Dy(3+) concentration. Yellow to blue luminescence intensity ratio, CIE chromaticity co-ordinates and correlated color temperature were also calculated for different concentrations of Dy(3+)-doped Sr0.5Ca0.5TiO3 phosphor at different λex.


Assuntos
Cálcio/química , Disprósio/química , Luminescência , Medições Luminescentes , Oxigênio/química , Estrôncio/química , Titânio/química , Processos Fotoquímicos
19.
Poult Sci ; 94(8): 1767-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26112034

RESUMO

Broiler houses are mainly lit by fluorescent light. With the expected continued increase in energy prices, the interest in less energy consuming light sources is growing. The light-emitting diode (LED) is an energy-saving alternative. The aims of the present 2 studies were to examine 1) the preference for LED color temperature and effects on behavior, and 2) effects of LED color temperature on performance and welfare of male broilers (Ross 308). Two color temperatures were investigated: neutral-white (4,100 K) and cold-white (6,065 K). First, 6 groups of 6-day-old chicks were housed in pens consisting of 2 lightproof compartments with a pop-hole between allowing chicks to move freely between compartments. Number of broilers in each compartment and their behavior were recorded every 15 min on 6 d. A preference for 6,065 K was found (P < 0.001). On d 16, 28, and 34, more time was spent in the 6,065 K treatment (P < 0.03), whereas indifference between treatments was found on d 4, 10, and 22 (P > 0.07). Second, each of the 2 light conditions was applied to 6 groups of 75 chicks. BW and feed consumption were registered weekly. On d 34, we scored gait, foot pad dermatitis, and hock burns in 15 individuals/pen. At slaughter (d 35), cold carcass weight was recorded from all individuals, while yields of different body parts were collected from 9 individuals/group. Broilers from the 6,065 K treatment were 67.4 ± 19.2 g heavier on the day of slaughter (P = 0.0009), whereas no difference was found at other ages (P > 0.12). Feed intake was found to be similar for the 2 treatments (P = 0.52). Pectoralis minor was 4.1 ± 1.9 g heavier in the 6,065 K treatment (P = 0.03). There was no difference between the light treatments in any of the welfare parameters. We conclude from the results that of the 2 color temperatures examined, the most suitable for use in commercial broiler houses is 6,065 K.


Assuntos
Bem-Estar do Animal , Comportamento Animal , Galinhas/crescimento & desenvolvimento , Iluminação/instrumentação , Envelhecimento , Animais , Galinhas/fisiologia , Cor , Abrigo para Animais , Masculino
20.
Molecules ; 20(7): 13005-30, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26193252

RESUMO

Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.


Assuntos
Iluminação , Compostos Orgânicos/química , Desenho de Equipamento/instrumentação , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA