Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ultrasonics ; 142: 107395, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972175

RESUMO

Traditional brightness-mode ultrasound imaging is primarily constrained by the low specificity among tissues and the inconsistency among sonographers. The major cause is the imaging method that represents the amplitude of echoes as brightness and ignores other detailed information, leaving sonographers to interpret based on organ contours that depend highly on specific imaging planes. Other ultrasound imaging modalities, color Doppler imaging or shear wave elastography, overlay motion or stiffness information to brightness-mode images. However, tissue-specific scattering properties and spectral patterns remain unknown in ultrasound imaging. Here we demonstrate that the distribution (size and average distance) of scattering particles leads to characteristic wavelet spectral patterns, which enables tissue recognition and high-contrast ultrasound imaging. Ultrasonic wavelet spectra from similar particle distributions tend to cluster in the eigenspace according to principal component analysis, whereas those with different distributions tend to be distinguishable from one another. For each distribution, a few wavelet spectra are unique and act as a fingerprint to recognize the corresponding tissue. Illumination of specific tissues and organs with designated colors according to the recognition results yields high-contrast ultrasound imaging. The fully-colorized tissue-specific ultrasound imaging potentially simplifies the interpretation and promotes consistency among sonographers, or even enables the applicability for non-professionals.


Assuntos
Análise de Ondaletas , Cor , Ultrassonografia/métodos , Imagens de Fantasmas , Animais , Análise de Componente Principal , Humanos
2.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260707

RESUMO

Photon-counting micro computed tomography (micro-CT) offers new potential in preclinical imaging, particularly in distinguishing materials. It becomes especially helpful when combined with contrast agents, enabling the differentiation of tumors from surrounding tissues. There are mainly two types of contrast agents in the market for micro-CT: small molecule-based and nanoparticle-based. However, despite their widespread use in liver tumor studies, there is a notable gap in research on the application of these commercially available agents for photon-counting micro-CT in breast and ovarian tumors. Herein, we explored the effectiveness of these agents in differentiating tumor xenografts from various origins (AU565, MDA-MB-231, and SKOV-3) in nude mice, using photon-counting micro-CT. Specifically, ISOVUE-370 (a small molecule-based agent) and Exitrone Nano 12000 (a nanoparticle-based agent) were investigated in this context. To improve tumor visualization, we proposed a novel color visualization method for photon-counting micro-CT, which changes color tones to highlight contrast media distribution, offering a robust alternative to traditional material decomposition methods with less computational demand. Our in vivo experiments confirm its effectiveness, showing distinct enhancement characteristics for each contrast agent. Qualitative and quantitative analyses suggested that Exitrone Nano 12000 provides superior vasculature enhancement and better quantitative consistency across scans, while ISOVUE-370 gives more comprehensive tumor enhancement but with a significant variance between scans due to its short blood half-time. This variability leads to high sensitivity to timing and individual differences among mice. Further, a paired t-test on mean and standard deviation values within tumor volumes showed significant differences between the AU565 and SKOV-3 tumor models with the nanoparticle-based (p-values < 0.02), attributable to their distinct vascularity, as confirmed by immunohistochemistry. These findings underscore the utility of photon-counting micro-CT in non-invasively assessing the morphology and anatomy of different tumor xenografts, which is crucial for tumor characterization and longitudinal monitoring of tumor development and response to treatments.

3.
Foods ; 12(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36900441

RESUMO

A visual and easy-to-implement representation approach of red wine color is proposed in this work. The wine color under standard conditions, called feature color, was reproduced in the form of a circular spot. The feature color was further decomposed into two orthogonal aspects, the chromatic and light-dark components, characterized in the form of chromaticity distribution plane and lightness distribution plane, respectively. The color characterization of wine samples showed that this method well represented the color characteristics and can provide intuitive visual perception of wine color, in a way that is more reliable and convenient than the photographic method. The applications for monitoring the color evolution during winery and laboratory fermentation and the age discrimination of 175 commercial red wines suggest that this visual method is effective for color management and control of wine during fermentation and aging. The proposed method is a convenient way to present, store, convey, understand, analyze and compare the color information of wines.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38495871

RESUMO

Hyperspectral imaging (HSI) has been demonstrated in various digital pathology applications. However, the intrinsic high dimensionality of hyperspectral images makes it difficult for pathologists to visualize the information. The aim of this study is to develop a method to transform hyperspectral images of hemoxylin & eosin (H&E)-stained slides to natural-color RGB histologic images for easy visualization. Hyperspectral images were obtained at 40× magnification with an automated microscopic imaging system and downsampled by various factors to generate data equivalent to different magnifications. High-resolution digital histologic RGB images were cropped and registered to the corresponding hyperspectral images as the ground truth. A conditional generative adversarial network (cGAN) was trained to output natural color RGB images of the histological tissue samples. The generated synthetic RGBs have similar color and sharpness to real RGBs. Image classification was implemented using the real and synthetic RGBs, respectively, with a pretrained network. The classification of tumor and normal tissue using the HSI-synthesized RGBs yielded a comparable but slightly higher accuracy and AUC than the real RGBs. The proposed method can reduce the acquisition time of two imaging modalities while giving pathologists access to the high information density of HSI and the quality visualization of RGBs. This study demonstrated that HSI may provide a potentially better alternative to current RGB-based pathologic imaging and thus make HSI a viable tool for histopathological diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA