Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931540

RESUMO

A motor imagery brain-computer interface connects the human brain and computers via electroencephalography (EEG). However, individual differences in the frequency ranges of brain activity during motor imagery tasks pose a challenge, limiting the manual feature extraction for motor imagery classification. To extract features that match specific subjects, we proposed a novel motor imagery classification model using distinctive feature fusion with adaptive structural LASSO. Specifically, we extracted spatial domain features from overlapping and multi-scale sub-bands of EEG signals and mined discriminative features by fusing the task relevance of features with spatial information into the adaptive LASSO-based feature selection. We evaluated the proposed model on public motor imagery EEG datasets, demonstrating that the model has excellent performance. Meanwhile, ablation studies and feature selection visualization of the proposed model further verified the great potential of EEG analysis.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Humanos , Algoritmos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Imaginação/fisiologia
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1126-1134, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151935

RESUMO

Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern ( wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Algoritmos , Análise Espectral
3.
Sensors (Basel) ; 22(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336418

RESUMO

Brain-computer interface (BCI) research has attracted worldwide attention and has been rapidly developed. As one well-known non-invasive BCI technique, electroencephalography (EEG) records the brain's electrical signals from the scalp surface area. However, due to the non-stationary nature of the EEG signal, the distribution of the data collected at different times or from different subjects may be different. These problems affect the performance of the BCI system and limit the scope of its practical application. In this study, an unsupervised deep-transfer-learning-based method was proposed to deal with the current limitations of BCI systems by applying the idea of transfer learning to the classification of motor imagery EEG signals. The Euclidean space data alignment (EA) approach was adopted to align the covariance matrix of source and target domain EEG data in Euclidean space. Then, the common spatial pattern (CSP) was used to extract features from the aligned data matrix, and the deep convolutional neural network (CNN) was applied for EEG classification. The effectiveness of the proposed method has been verified through the experiment results based on public EEG datasets by comparing with the other four methods.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Humanos , Imaginação , Aprendizado de Máquina
4.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236694

RESUMO

An efficient feature extraction method for two classes of electroencephalography (EEG) is demonstrated using Common Spatial Patterns (CSP) with optimal spatial filters. However, the effects of artifacts and non-stationary uncertainty are more pronounced when CSP filtering is used. Furthermore, traditional CSP methods lack frequency domain information and require many input channels. Therefore, to overcome this shortcoming, a feature extraction method based on Online Recursive Independent Component Analysis (ORICA)-CSP is proposed. For EEG-based brain-computer interfaces (BCIs), especially online and real-time BCIs, the most widely used classifiers used to be linear discriminant analysis (LDA) and support vector machines (SVM). Previous evaluations clearly show that SVMs generally outperform other classifiers in terms of performance. In this case, Adaptive Support Vector Machine (A-SVM) is used for classification together with the ORICA-CSP method. The results are promising, and the experiments are performed on EEG data of 4 classes' motor images, namely Dataset 2a of BCI Competition IV.


Assuntos
Interfaces Cérebro-Computador , Máquina de Vetores de Suporte , Algoritmos , Artefatos , Análise Discriminante , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1065-1073, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36575074

RESUMO

The effective classification of multi-task motor imagery electroencephalogram (EEG) is helpful to achieve accurate multi-dimensional human-computer interaction, and the high frequency domain specificity between subjects can improve the classification accuracy and robustness. Therefore, this paper proposed a multi-task EEG signal classification method based on adaptive time-frequency common spatial pattern (CSP) combined with convolutional neural network (CNN). The characteristics of subjects' personalized rhythm were extracted by adaptive spectrum awareness, and the spatial characteristics were calculated by using the one-versus-rest CSP, and then the composite time-domain characteristics were characterized to construct the spatial-temporal frequency multi-level fusion features. Finally, the CNN was used to perform high-precision and high-robust four-task classification. The algorithm in this paper was verified by the self-test dataset containing 10 subjects (33 ± 3 years old, inexperienced) and the dataset of the 4th 2018 Brain-Computer Interface Competition (BCI competition Ⅳ-2a). The average accuracy of the proposed algorithm for the four-task classification reached 93.96% and 84.04%, respectively. Compared with other advanced algorithms, the average classification accuracy of the proposed algorithm was significantly improved, and the accuracy range error between subjects was significantly reduced in the public dataset. The results show that the proposed algorithm has good performance in multi-task classification, and can effectively improve the classification accuracy and robustness.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Humanos , Adulto , Redes Neurais de Computação , Imagens, Psicoterapia/métodos , Eletroencefalografia/métodos , Algoritmos , Processamento de Sinais Assistido por Computador
6.
BMC Bioinformatics ; 22(Suppl 6): 195, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078274

RESUMO

BACKGROUND: Brain wave signal recognition has gained increased attention in neuro-rehabilitation applications. This has driven the development of brain-computer interface (BCI) systems. Brain wave signals are acquired using electroencephalography (EEG) sensors, processed and decoded to identify the category to which the signal belongs. Once the signal category is determined, it can be used to control external devices. However, the success of such a system essentially relies on significant feature extraction and classification algorithms. One of the commonly used feature extraction technique for BCI systems is common spatial pattern (CSP). RESULTS: The performance of the proposed spatial-frequency-temporal feature extraction (SPECTRA) predictor is analysed using three public benchmark datasets. Our proposed predictor outperformed other competing methods achieving lowest average error rates of 8.55%, 17.90% and 20.26%, and highest average kappa coefficient values of 0.829, 0.643 and 0.595 for BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, respectively. CONCLUSIONS: Our proposed SPECTRA predictor effectively finds features that are more separable and shows improvement in brain wave signal recognition that can be instrumental in developing improved real-time BCI systems that are computationally efficient.


Assuntos
Ondas Encefálicas , Interfaces Cérebro-Computador , Algoritmos , Encéfalo , Eletroencefalografia , Imaginação , Processamento de Sinais Assistido por Computador
7.
Biomed Eng Online ; 19(1): 23, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299441

RESUMO

BACKGROUND: Generally, brain-computer interfaces (BCIs) require calibration before usage to ensure efficient performance. Therefore, each BCI user has to attend a certain number of calibration sessions to be able to use the system. However, such calibration requirements may be difficult to fulfill especially for patients with disabilities. In this paper, we introduce a probabilistic transfer learning approach to reduce the calibration requirements of our EEG-fTCD hybrid BCI designed using motor imagery (MI) and flickering mental rotation (MR)/word generation (WG) paradigms. The proposed approach identifies the top similar datasets from previous BCI users to a small training dataset collected from a current BCI user and uses these datasets to augment the training data of the current BCI user. To achieve such an aim, EEG and fTCD feature vectors of each trial were projected into scalar scores using support vector machines. EEG and fTCD class conditional distributions were learnt separately using the scores of each class. Bhattacharyya distance was used to identify similarities between class conditional distributions obtained using training trials of the current BCI user and those obtained using trials of previous users. RESULTS: Experimental results showed that the performance obtained using the proposed transfer learning approach outperforms the performance obtained without transfer learning for both MI and flickering MR/WG paradigms. In particular, it was found that the calibration requirements can be reduced by at least 60.43% for the MI paradigm, while at most a reduction of 17.31% can be achieved for the MR/WG paradigm. CONCLUSIONS: Data collected using the MI paradigm show better generalization across subjects.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Calibragem , Eletrodos , Humanos , Probabilidade , Fatores de Tempo
8.
Sensors (Basel) ; 20(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842635

RESUMO

The common spatial pattern (CSP) is a very effective feature extraction method in motor imagery based brain computer interface (BCI), but its performance depends on the selection of the optimal frequency band. Although a lot of research works have been proposed to improve CSP, most of these works have the problems of large computation costs and long feature extraction time. To this end, three new feature extraction methods based on CSP and a new feature selection method based on non-convex log regularization are proposed in this paper. Firstly, EEG signals are spatially filtered by CSP, and then three new feature extraction methods are proposed. We called them CSP-wavelet, CSP-WPD and CSP-FB, respectively. For CSP-Wavelet and CSP-WPD, the discrete wavelet transform (DWT) or wavelet packet decomposition (WPD) is used to decompose the spatially filtered signals, and then the energy and standard deviation of the wavelet coefficients are extracted as features. For CSP-FB, the spatially filtered signals are filtered into multiple bands by a filter bank (FB), and then the logarithm of variances of each band are extracted as features. Secondly, a sparse optimization method regularized with a non-convex log function is proposed for the feature selection, which we called LOG, and an optimization algorithm for LOG is given. Finally, ensemble learning is used for secondary feature selection and classification model construction. Combing feature extraction and feature selection methods, a total of three new EEG decoding methods are obtained, namely CSP-Wavelet+LOG, CSP-WPD+LOG, and CSP-FB+LOG. Four public motor imagery datasets are used to verify the performance of the proposed methods. Compared to existing methods, the proposed methods achieved the highest average classification accuracy of 88.86, 83.40, 81.53, and 80.83 in datasets 1-4, respectively. The feature extraction time of CSP-FB is the shortest. The experimental results show that the proposed methods can effectively improve the classification accuracy and reduce the feature extraction time. With comprehensive consideration of classification accuracy and feature extraction time, CSP-FB+LOG has the best performance and can be used for the real-time BCI system.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos , Análise de Ondaletas
9.
Sensors (Basel) ; 20(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630378

RESUMO

Brain-computer interfaces (BCI) have witnessed a rapid development in recent years. However, the active BCI paradigm is still underdeveloped with a lack of variety. It is imperative to adapt more voluntary mental activities for the active BCI control, which can induce separable electroencephalography (EEG) features. This study aims to demonstrate the brain function of timing prediction, i.e., the expectation of upcoming time intervals, is accessible for BCIs. Eighteen subjects were selected for this study. They were trained to have a precise idea of two sub-second time intervals, i.e., 400 ms and 600 ms, and were asked to measure a time interval of either 400 ms or 600 ms in mind after a cue onset. The EEG features induced by timing prediction were analyzed and classified using the combined discriminative canonical pattern matching and common spatial pattern. It was found that the ERPs in low-frequency (0~4 Hz) and energy in high-frequency (20~60 Hz) were separable for distinct timing predictions. The accuracy reached the highest of 93.75% with an average of 76.45% for the classification of 400 vs. 600 ms timing. This study first demonstrates that the cognitive EEG features induced by timing prediction are detectable and separable, which is feasible to be used in active BCIs controls and can broaden the category of BCIs.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Algoritmos , Encéfalo/fisiologia , Potenciais Evocados , Humanos
10.
J Integr Neurosci ; 18(2): 141-152, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31321955

RESUMO

The number of electrode channels in a brain-computer interface affects not only its classification performance, but also its convenience in practical applications. However, an effective method for determining the number of channels has not yet been established for motor imagery-based brain-computer interfaces. This paper proposes a novel evolutionary search algorithm, binary quantum-behaved particle swarm optimization, for channel selection, which is implemented in a wrapping manner, coupling common spatial pattern for feature extraction, and support vector machine for classification. The fitness function of binary quantum-behaved particle swarm optimization is defined as the weighted sum of classification error rate and relative number of channels. The classification performance of the binary quantum-behaved particle swarm optimization-based common spatial pattern was evaluated on an electroencephalograph data set and an electrocorticography data set. It was subsequently compared with that of other three common spatial pattern methods: using the channels selected by binary particle swarm optimization, all channels in raw data sets, and channels selected manually. Experimental results showed that the proposed binary quantum-behaved particle swarm optimization-based common spatial pattern method outperformed the other three common spatial pattern methods, significantly decreasing the classification error rate and number of channels, as compared to the common spatial pattern method using whole channels in raw data sets. The proposed method can significantly improve the practicability and convenience of a motor imagery-based brain-computer interface system.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia , Humanos , Imaginação , Movimento , Teoria Quântica , Máquina de Vetores de Suporte
11.
Sensors (Basel) ; 19(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691180

RESUMO

Most electroencephalography (EEG) based emotion recognition systems make use of videos and images as stimuli. Few used sounds, and even fewer studies were found involving self-induced emotions. Furthermore, most of the studies rely on single stimuli to evoke emotions. The question of "whether different stimuli for same emotion elicitation generate any subject-independent correlations" remains unanswered. This paper introduces a dual modality based emotion elicitation paradigm to investigate if emotions can be classified induced with different stimuli. A method has been proposed based on common spatial pattern (CSP) and linear discriminant analysis (LDA) to analyze human brain signals for fear emotions evoked with two different stimuli. Self-induced emotional imagery is one of the considered stimuli, while audio/video clips are used as the other stimuli. The method extracts features from the CSP algorithm and LDA performs classification. To investigate associated EEG correlations, a spectral analysis was performed. To further improve the performance, CSP was compared with other regularized techniques. Critical EEG channels are identified based on spatial filter weights. To the best of our knowledge, our work provides the first contribution for the assessment of EEG correlations in the case of self versus video induced emotions captured with a commercial grade EEG device.


Assuntos
Eletroencefalografia/métodos , Emoções/fisiologia , Medo/fisiologia , Algoritmos , Interfaces Cérebro-Computador , Humanos , Máquina de Vetores de Suporte
12.
Sensors (Basel) ; 19(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480390

RESUMO

This paper presents a novel motor imagery (MI) classification algorithm using filter-bank common spatial pattern (FBCSP) features based on MI-relevant channel selection. In contrast to existing channel selection methods based on global CSP features, the proposed algorithm utilizes the Fisher ratio of time domain parameters (TDPs) and correlation coefficients: the channel with the highest Fisher ratio of TDPs, named principle channel, is selected and a supporting channel set for the principle channel that consists of highly correlated channels to the principle channel is generated. The proposed algorithm using the FBCSP features generated from the supporting channel set for the principle channel significantly improved the classification performance. The performance of the proposed method was evaluated using BCI Competition III Dataset IVa (18 channels) and BCI Competition IV Dataset I (59 channels).

13.
Sensors (Basel) ; 19(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978978

RESUMO

Single-trial motor imagery classification is a crucial aspect of brain-computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain-computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain-computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Árvores de Decisões , Aprendizado Profundo , Humanos , Modelos Teóricos , Movimento/fisiologia , Redes Neurais de Computação , Software
14.
Neurocomputing (Amst) ; 343: 154-166, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32226230

RESUMO

The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single-classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications.

15.
J Med Syst ; 43(6): 169, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31062175

RESUMO

Mental tasks classification such as motor imagery, based on EEG signals is an important problem in brain computer interface systems (BCI). One of the major concerns in BCI is to have a high classification accuracy. The other concerning one is with the favorable result is guaranteed how to improve the computational efficiency. In this paper, Mu/Beta rhythm was obtained by bandpass filter from EEG signal. And the classical linear discriminant analysis (LDA) was used for deciding which rhythm can give the better classification performance. During this, the common spatial pattern (CSP) was used to project data subject to the ratio of projected energy of one class to that of the other class was maximized. The optimal projection dimension was determined corresponding to the maximum of area under the curve (AUC) for each participant. Eventually, regularized linear discriminant analysis (RLDA) is possible to decode the imagined motor sensed using electroencephalogram (EEG). Results show that higher classification accuracy can be provided by RLDA. And optimal projection dimensions determined by LDA and RLDA are of consistent solution, this improves computational efficiency of CSP-RLDA method without computation of projection dimension.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/classificação , Eletroencefalografia/métodos , Algoritmos , Área Sob a Curva , Encéfalo/fisiologia , Análise Discriminante , Humanos , Movimento
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(6): 911-915, 2019 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-31875363

RESUMO

This paper aims to realize the decoding of single trial motor imagery electroencephalogram (EEG) signal by extracting and classifying the optimized features of EEG signal. In the classification and recognition of multi-channel EEG signals, there is often a lack of effective feature selection strategies in the selection of the data of each channel and the dimension of spatial filters. In view of this problem, a method combining sparse idea and greedy search (GS) was proposed to improve the feature extraction of common spatial pattern (CSP). The improved common spatial pattern could effectively overcome the problem of repeated selection of feature patterns in the feature vector space extracted by the traditional method, and make the extracted features have more obvious characteristic differences. Then the extracted features were classified by Fisher linear discriminant analysis (FLDA). The experimental results showed that the classification accuracy obtained by proposed method was 19% higher on average than that of traditional common spatial pattern. And high classification accuracy could be obtained by selecting feature set with small size. The research results obtained in the feature extraction of EEG signals lay the foundation for the realization of motor imagery EEG decoding.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Algoritmos , Análise Discriminante , Imaginação , Processamento de Sinais Assistido por Computador
17.
Biomed Eng Online ; 17(1): 103, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30071853

RESUMO

BACKGROUND: One of the most promising applications for electroencephalogram (EEG)-based brain computer interface is for stroke rehabilitation. Implemented as a standalone motor imagery (MI) training system or as part of a rehabilitation robotic system, many studies have shown benefits of using them to restore motor control in stroke patients. Hand movements have widely been chosen as MI tasks. Although potentially more challenging to analyze, wrist and forearm movement such as wrist flexion/extension and forearm pronation/supination should also be considered for MI tasks, because these movements are part of the main exercises given to patients in conventional stroke rehabilitation. This paper will evaluate the effectiveness of such movements for MI tasks. METHODS: Three hand and wrist movement tasks which were hand opening/closing, wrist flexion/extension and forearm pronation/supination were chosen as motor imagery tasks for both hands. Eleven subjects participated in the experiment. All of them completed hand opening/closing task session. Ten subjects completed two MI task sessions which were hand opening/closing and wrist flexion/extension. Five subjects completed all three MI tasks sessions. Each MI task comprised 8 sessions spanning a 4 weeks period. For classification, feature extraction based on common spatial pattern (CSP) algorithm was used. Two types were implemented, one with conventional CSP (termed WB) and one with an increase number of features achieved by filtering EEG data into five bands (termed FB). Classification was done by linear discriminant analysis (LDA) and support vector machine (SVM). RESULTS: Eight-fold cross validation was applied on EEG data. LDA and SVM gave comparable classification accuracy. FB achieved significantly higher classification accuracy compared to WB. The accuracy of classifying wrist flexion/extension task were higher than that of classifying hand opening/closing task in all subjects. Classifying forearm pronation/supination task achieved higher accuracy than classifying hand opening/closing task in most subjects but achieved lower accuracy than classifying wrist flexion/extension task in all subjects. Significant improvements of classification accuracy were found in nine subjects when considering individual sessions of experiments of all MI tasks. The results of classifying hand opening/closing task and wrist flexion/extension task were comparable to the results of classifying hand opening/closing task and forearm pronation/supination task. Classification accuracy of wrist flexion/extension task and forearm pronation/supination task was lower than those of hand movement tasks and wrist movement tasks. CONCLUSION: High classification accuracy of the three MI tasks support the possibility of using EEG-based stroke rehabilitation system with these movements. Either LDA or SVM can equally be chosen as a classifier since the difference of their accuracies is not statistically significant. Significantly higher classification accuracy made FB more suitable for classifying MI task compared to WB. More training sessions could potentially lead to better accuracy as evident in most subjects in this experiment.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Mãos/fisiologia , Movimento , Punho/fisiologia , Humanos
18.
BMC Bioinformatics ; 18(Suppl 16): 545, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297303

RESUMO

BACKGROUND: Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. METHODS: In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. RESULTS: The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. CONCLUSIONS: Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.


Assuntos
Eletroencefalografia/classificação , Processamento de Sinais Assistido por Computador/instrumentação , Eletroencefalografia/métodos , Humanos
19.
J Integr Neurosci ; 16(3): 241-254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28891513

RESUMO

Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Encéfalo/fisiologia , Eletroencefalografia/métodos , Imaginação/fisiologia , Atividade Motora/fisiologia , Simulação por Computador , Eletroencefalografia/instrumentação , Humanos , Reconhecimento Automatizado de Padrão/métodos
20.
Sensors (Basel) ; 17(11)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117100

RESUMO

Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.


Assuntos
Algoritmos , Automação , Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA