Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366110

RESUMO

The RAPID (reconstruction algorithm for probabilistic inspection of defect) method based on Lamb wave detection is an effective method to give the position information of a defect in composite plate. In this paper, an improved RAPID imaging method based on machine learning (ML) is proposed to precisely visualize the location and features of defects in composite plate. First, the specific feature information of the defect, such as type, size and direction, can be identified by analyzing the detection signals through multiple machine learning models. Then, according to the obtained defect features, the scaling parameter ß of the RAPID method which controls the size of the elliptical area is revised, and weights are set to the important detection paths which are related to defect features to realize precise defect imaging. The simulation results show that the proposed method can intuitively characterize the location and related feature information of the defect, and effectively improve the accuracy of defect imaging.

2.
Sensors (Basel) ; 19(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893919

RESUMO

Lamb wave (LW) is well suited for structural health monitoring (SHM) in advanced composites. However, characteristic differences between the symmetric modes and the anti-symmetric modes often add complexity to SHM systems. The anisotropic nature of composite materials, on the other hand, necessitates direction-sensitive sensing. In this paper we report the experimental demonstration of bidirectional (0° and 90°), bimodal (S0 and A0) LW measurement within the frequency range of 20⁻140 kHz using a polarization-maintaining fiber Bragg grating (PM-FBG) sensor attached to a composite laminated plate. By selectively interrogating the fast and/or the slow axis of the PM-FBG, we show that not only can the sensor respond to LWs propagating along both directions, but the response can also be used to differentiate the two directions. Moreover, the fast axis of the sensor is able to respond to both the S0 and the A0 modes when the sensor is aligned with the wave propagation direction, whereas single S0 mode response can be achieved with the slow axis operating perpendicularly to the wave propagation direction. Such diverse responses indicate the potential of PM-FBGs as versatile multi-parameter SHM detectors, which can effectively address the challenges posed by material anisotropicity and LW mode diversity.

3.
Biomed Phys Eng Express ; 10(3)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547526

RESUMO

For the purpose of fixing tibia fractures, composite bone plates are suggested. Metal plates cause stress shielding, lessen the compression force at the fracture site, and have an impact on the healing process because they are significantly more rigid than bone. To prevent excessive shear strain and consequent instability at the fracture site, it is imperative to reduce stiffness in the axial direction without lowering stiffness in the transverse direction. Only a carefully crafted fiber reinforced composite with anisotropic properties will suffice to accomplish this. The purpose of the current study is to examine the impact of axial and shear movements at the fracture site on the fixing of metal and composite bone plates. After modeling the tibia with a 1 mm fracture gap, titanium plates, carbon/epoxy, carbon/PEEK, and carbon/UHMWPE composite bone plates were used to fix it. There are 6 holes on each of the 103 mm long plates. To determine the stresses and axial movement in the fracture site, anatomical 3D Finite Element (FE) models of the tibia with composite bone plates are built. The simulations that were run for various composite plate layouts and types give suggestions for selecting the best composite bone plate. Although the matrix material causes some variations in behaviors, most of the plates perform as well as or even better than metal plates. Thus, the appropriate composite combinations are recommended for a given fracture structure.


Assuntos
Placas Ósseas , Fraturas Ósseas , Humanos , Tíbia/cirurgia , Fixação Interna de Fraturas , Carbono/química
4.
Ultrasonics ; 138: 107273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387138

RESUMO

In this study the Non-Linear Ultrasonic Sideband Peak Count-Index (SPC-I) technique is used as the foundation for anovel approach towards acoustic source localization (ASL) in orthotropic composite plates. The SPC-I based technique proposed here does not require the signal attenuation information or any knowledge on the time of arrival of the signal. It should be noted that since individual sensors can have varying sensitivities, the signal attenuation measured from the recorded signal amplitude is not very reliable. In addition, it is not necessary to have any prior knowledge of the mechanical properties of the composite plate material. All these are achievable by attaching 25 sensors that are well-scattered on the surface of the plate. The signals that are generated by an acoustic source are recorded by these 25 sensors. The recorded signals are then analyzed to derive the SPC-I value for each signal. The calculated SPC-I values are run through an optimization algorithm to predict the acoustic source location. Such localization is possible because the composite plate is inherently a non-linear material. Hence, as the signal travels longer distances through a composite plate, the recorded signal should show increasing level of distortion due to material non-linearity and dispersion. This phenomenon manifests itself primarily as a consequence of signal scattering and frequency modulation. Because of this, the phenomena of increasing distortion in the signal with increasing propagation distance can be exploited and utilized to predict the location of the acoustic source by solely utilizing the SPC-I values. This acoustic source localization technique is experimentally verified on a Carbon Fiber Reinforced (CFR) composite plate of dimension 500 mm x 500 mm with a thickness of 1 mm. The experimental results confirmed the feasibility of the proposed technique.

5.
Materials (Basel) ; 17(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893801

RESUMO

This work investigated the impact and piercing load resistance (energy absorption capabilities) of 3D-printed composites plates manufactured by means of the Fused-Filament-Fabrication (FFF) technique. Two sets of reinforced composite plates were produced. The first set of plates was printed with short-carbon-fiber-reinforced polyamide-12, while the second set was reinforced with continuous fibers. The plates were tested with quasi-static indentation tests at various Span-to-Punch ratios and with three different indenter nose shapes (blunt, hemispherical, and conical). The quasi-static measurements were subsequently elaborated to estimate the energy absorption capability of the plates during a ballistic impact. The addition of continuous fibers increased the quasi-static energy absorption capability by 20-185% with respect to the short-fiber-reinforced plates. The quasi-static results showed that by including the continuous reinforcement in the plates, the normalized energy absorbed increased by an order of magnitude. Finally, a comparison with data from the literature concerning continuous-reinforced composite plates manufactured by means of traditional techniques was carried out. The comparison revealed that FFF-printed composite plates can compete with traditional composite ones in terms of both ballistic and quasi-static penetrating load conditions, even if limited by the lower fiber volume fraction. Thus, these findings confirm that this novel Additive Manufacturing technique is promising and worth investigating further.

6.
Heliyon ; 10(8): e29436, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681654

RESUMO

This work applies a higher order thickness-stretched model for the electro-elastic analysis of the composite graphene origami reinforced square plate sandwiched by the piezoelectric/piezomagnetic layers subjected to the thermal, electric, magnetic and mechanical loads. The plate is manufactured of a copper matrix reinforced with graphene origami where the effective material properties are calculated based on the micromechanical models as a function of volume fraction and folding degree of graphene origami, material properties of matrix, reinforcement, and local temperature. The governing equations are derived using the virtual work principle in terms of the bending, shear and stretching functions, in-plane displacements, electric, and magnetic potentials. The numerical results including various displacement components, maximum electric, and magnetic potentials are presented with changes of volume fraction, folding degree of reinforcement, electrical, magnetic, and thermal loading. A verification investigation is presented for approve of the methodology, and the solution procedure. The main novelty of this work is simultaneous effect of the thickness stretching and the multi-field loading on the electromagnetic bending results of the sandwich plate. Another novelty of this work is usage of graphene origami nano-reinforcement as a controllable material in a sandwich structure subjected to multi-field loadings. The results show an increase in bending, shear, and stretching deflections with an increase in electromagnetic loads, and folding degree as well as a decrease in volume fraction of reinforcement.

7.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903084

RESUMO

This work presents a novel strategy for detecting and localizing intra- or inter-laminar damages in composite structures using surface-instrumented strain sensors. It is based on the real-time reconstruction of structural displacements using the inverse Finite Element Method (iFEM). The iFEM reconstructed displacements or strains are post-processed or 'smoothed' to establish a real-time healthy structural baseline. As damage diagnosis is based on comparing damaged and healthy data obtained using the iFEM, no prior data or information regarding the healthy state of the structure is required. The approach is applied numerically on two carbon fiber-reinforced epoxy composite structures: for delamination detection in a thin plate, and skin-spar debond detection in a wing box. The influence of measurement noise and sensor locations on damage detection is also investigated. The results demonstrate that the proposed approach is reliable and robust but requires strain sensors proximal to the damage site to ensure accurate predictions.

8.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569991

RESUMO

The current work reveals the influence of loading parameters on the crack growth behavior of a Zr/Ti/steel composite plate with a crack normal to the interface by using an experiment and the finite element method. The Chaboche model was first used to study cyclic plastic evolution in composite materials. The results reveal that an increase in Fmax, Fm, and Fa can promote da/dN; meanwhile, an increase in R will reduce da/dN. The plastic strain accumulation results indicate that Fm mainly contributes to the tensile strain and compressive stress after the first cycle. Additionally, Fa increases the stress range and compression stress and greatly improves the plastic strain accumulation degree in subsequent loading cycles. The Fmax can significantly increase the stress amplitude and plastic strain accumulation level. When R increases, the plastic strain accumulation increases a little, but the stress amplitude and compression stress decrease greatly. Furthermore, it is also found that the elastic-plastic mismatch also affects the plastic evolution, that is, strengthening or weakening the effect of the loading parameters.

9.
Ultrasonics ; 129: 106901, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36473285

RESUMO

Ultrasonic-guided waves are attractive for rapid inspection of laminated composite structures, where cracks developed transverse to the loading direction are the severe type of damage. This paper presents studies of the interaction of fundamental symmetric S0 Lamb mode with vertical surface-breaking cracks in laminated composite plate structures. Finite element simulations and experimental investigations are used to study the effect of crack depth on S0 wave reflection behavior. Results show a monotonic rise of the reflection coefficient for different crack depths in a manner that is strongly dependent on the orientation of the plies and transverse ply location in the vicinity of the crack. Scattered wave packets in the reflection regime are captured using an in-plane laser. The S0 Lamb mode's sensitivity is numerically presented for the different crack depths in the long wavelength limit. We also observed that the reflected wave mode depicts the information of the corresponding broken interfaces. An attempt was made to show that this behavior relates to the crack-opening behavior in response to in-plane excitation. The reflection coefficient as a characteristic polynomial is proposed for various orientations. It was observed that the dispersion at receiver nodes makes the analysis challenging for distinguishing the signal from crack faces due to the smaller dimension. The study outcomes show its prospect as a promising NDE tool for crack damage detection in thin laminated plate structures.


Assuntos
Modelos Teóricos , Ultrassom , Simulação por Computador , Ondas Ultrassônicas , Algoritmos
10.
Polymers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808708

RESUMO

In this paper, the mechanical behavior of a functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plate is numerically investigated. According to the concept of a hierarchical model, the displacement is decomposed into the in-field functions and the assumed thickness-wise monomial. The former is defined on the plate midsurface and is approximated by the 2-D meshfree natural element method (NEM). The FG-CNTRC plate is modeled as a homogenized orthotropic body, and its effective elastic properties are determined by referring to MD simulation and the linear rule of mixtures. Regarding the thickness-wise distribution of CNTs, one uniform and three functionally gradient distributions are taken. Through comparative numerical experiments, the reliability of the numerical method is justified with the maximum relative difference of 6.12%. The effects of the volume fraction and vertical distribution of CNTs, the plate width-thickness and aspect ratios, and the boundary conditions on the bending, free vibration, and buckling behaviors of FG-CNTRC plates are examined. It is found that the mechanical behavior of FG-CNTRC plates is significantly dependent of these major parameters.

11.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431625

RESUMO

This paper uses ANSYS Workbench platform to simulate the casting and rolling composite process, taking the horizontal type casting and rolling machine as the research object, and conducts the numerical simulation study of copper-aluminum composite solid-liquid casting and rolling heat-flow coupling, mainly to study different walking speed, aluminum pouring temperature, casting and rolling zone length, heat transfer coefficient on the temperature field, liquid phase rate influence law, and use it as a theoretical guide for copper-aluminum solid-liquid casting. The experiments of copper-aluminum solid-liquid casting-rolling composite were carried out to optimize the process parameters and to verify the experiments, so as to prepare a well-bonded copper-aluminum composite plate. The composite mechanism in the preparation of copper-aluminum composite plate was analyzed, and it was clarified that the interfacial layer was formed through four stages: contact between copper and aluminum surfaces, contact surface activation, mutual diffusion of copper and aluminum atoms, and reaction diffusion.

12.
Polymers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631815

RESUMO

This paper aims to explore the material properties of RPC and transverse-bending performance, as well as the crack-width-calculation theory of a densely reinforced steel-RPC composite structure with different fiber parameters. Two fiber types (straight fiber, hybrid fiber) and four fiber volume contents (2%, 2.5%, 3%, 3.5%) were selected to explore the mechanical properties of RPC materials, and the influences of fiber parameters on compressive strength, modulus of elasticity, flexural strength and axial tensile property were investigated. Eight steel-RPC composite plates with different design parameters (fiber type and reinforcement ratio) were conducted to study the transverse-bending performance of steel-RPC composite deck structures. The results show that the addition of 3.5% hybrid fibers to the RPC matrix leads to the optimum axial tensile and flexural properties. Furthermore, the failure mode, load-displacement curve, crack occurrence and propagation characteristics of the composite structure are analyzed in detail. Based on the experimental results, the calculation methods of reinforcement stress and crack width of densely reinforced steel-RPC composite structure are proposed. The calculated results of reinforcement stress and maximum crack width are in good agreement with the actual measured values, which can provide a reference for engineering design.

13.
Materials (Basel) ; 15(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013859

RESUMO

In this paper, the refined plate theory (RPT), Hamilton's principle, and isogeometric analysis (IGA) are applied to investigate the static bending, free vibration and buckling behaviors of functionally graded graphene-platelet-reinforced piezoelectric (FG-GRP) plates resting on a Winkler elastic foundation. The graphene platelets (GPLs) are distributed in polyvinylidene fluoride (PVDF) as a power function along the plate thickness direction to generate functionally gradient materials (FGMs). The modified Halpin-Tsai parallel model predicts the effective Young's modulus of each graphene-reinforced piezoelectric composite plate layer, and the rule of the mixture can be used to calculate the effective Poisson's ratio, mass density, and piezoelectric properties. Under different graphene distribution patterns and boundary conditions, the effects of a plate's geometric dimensions, GPLs' physical properties, GPLs' geometric properties and the elastic coefficient of the Winkler elastic foundation on deflections, frequencies and bucking loads of the FG-GRP plates are investigated in depth. The convergence and computational efficiency of the present IGA are confirmed versus other studies. Furthermore, the results illustrate that a small amount of GPL reinforcements can improve the FG-GRP plates' mechanical properties, i.e., GPLs can improve the system's vibration and stability characteristics. The more GPL reinforcements spread into the surface layers, the more effective it is at enhancing the system's stiffness.

14.
Materials (Basel) ; 15(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208161

RESUMO

In this paper, the effect of temperature on the corrosion behavior and corrosion resistance of the copper-aluminum laminated composite plates were investigated by salt-spray corrosion, potential polarization curve and electrochemical impedance spectroscopy. Moreover, the microstructure of the copper-aluminum laminated composite plate after salt-spray corrosion was observed by scanning electron microscope, and X-ray photoelectron spectroscopy was used to study the composition of corrosion product. The results revealed that the corrosion products of the copper-aluminum laminated composite plate were Al2O3 and AlOOH. Due to the galvanic corrosion of the copper-aluminum laminated composite plate, the cathode underwent oxygen absorption corrosion during the corrosion process; therefore, the presence of moisture and the amount of dissolved oxygen in the corrosive environment had a great influence on the corrosion process. The increasing temperature would evaporate a large amount of moisture, resulting in the corrosion product-aluminum oxide dehydrated and covered the surface of the material in the process of salt-spray corrosion, which played a role in protecting the material. Therefore, the corrosion resistance of the copper-aluminum laminated composite plate first decreased and then increased. In the salt-spray corrosion environment, the corrosion resistance of the copper-aluminum laminated composite plate reached the lowest at 45 °C, and its corrosion rate was the fastest, at 0.728 g/m2·h. The electrochemical corrosion occurred in the solution, and the impact was small; however, in addition to the protective corrosion products, the ion mobility in the solution also had a certain influence on the corrosion rate, and the ionic activity increased with the increase of temperature. Therefore, the corrosion resistance of the copper-aluminum laminated composite plate gradually decreased as the temperature increased, and its corrosion resistance was the worst at 50 °C.

15.
Materials (Basel) ; 13(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516901

RESUMO

In order to better understand the damage tolerance of reinforced composite plates, the impact damage of the reinforced composite plates was investigated under low-velocity impact test. The experimental results show that the impact of different positions and energies causes different degrees of damage to the specimens, including but not limited to ply fracture, internal delamination of the skin, and debonding of the stiffeners and skin. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different forms of impact. The impact point has the greatest influence on the specimen while it locates at the intersection of longitudinal and transverse bars. Compared with the intact specimen, the ultimate load carrying capacity was reduced by 16.83% and 44.02%, while the specimen impacted by 15 J and 30 J, respectively. The compression failure mode of the damaged specimen is mainly the breakage of the stiffeners and the delamination of the skin.

16.
Materials (Basel) ; 12(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650647

RESUMO

The aluminum⁻titanium (Al-Ti) double-layer composite plate is a promising composite material, but necessary surface protection was required before its application. In this paper, plasma electrolytic oxidation (PEO) was employed to fabricate a ceramic coating on the surface of a Al-Ti double-layer composite plate. To investigate the coating growth mechanism on the Al-Ti double-layer composite plate, a single-Al plate and a single-Ti plate were introduced for comparison experiments. Results showed that, the composite of Al and Ti accelerated the coating growth rate on the part-Ti portion of the composite plate, and that of the part-Al portion was decreased. Electrochemical impedance spectroscopy analysis indicated that the equivalent circuit of the Al-Ti coating was formed by connecting two different circuits in parallel. The reaction behavior revealed that the electric energy during the PEO would leak from the circuit with the weaker blocking effect, and confirmed that the electric energy distribution followed the law of low-resistance distribution. Finally, the mechanism was extended to the PEO treatment on general metal matrix composites to broaden the application theory of the technology.

17.
Materials (Basel) ; 12(4)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781542

RESUMO

Triple-layered composite plates are created by joining three composite layers using shear connectors. These layers, which are assumed to be always in contact and able to move relatively to each other during deformation, could be the same or different in geometric dimensions and material. They are applied in various engineering fields such as ship-building, aircraft wing manufacturing, etc. However, there are only a few publications regarding the calculation of this kind of plate. This paper proposes novel equations, which utilize Mindlin's theory and finite element modelling to simulate the forced vibration of triple-layered composite plates with layers connected by shear connectors subjected to a moving load. Moreover, a Matlab computation program is introduced to verify the reliability of the proposed equations, as well as the influence of some parameters, such as boundary conditions, the rigidity of the shear connector, thickness-to-length ratio, and the moving load velocity on the dynamic response of the composite plate.

18.
Materials (Basel) ; 12(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653109

RESUMO

In this study, the welding process of 304 stainless steel/Q345R low alloy steel composite plate is modeled by experimental and finite element methods to study the complex thermomechanical behavior. The residual stress and microstructure evolution of composite plate in the welding process are also investigated. The welding thermal cycle curve and residual stress distribution at the joint are obtained by using thermocouple and blind-hole methods. Optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to investigate the evolution of microstructure, morphology, and element diffusion of the joint. The results show that the maximum von Mises welding residual stress is 312 MPa, which is located in the bottom of the start point of the weld zone. The residual stress gradually decreases and tends to be stable along the direction from the weld to the base metal. In addition, a residual stress discontinuity is found at the interface between the bimetal. It is also found that the closer it is to the weld joint, the more uniform is the austenite distribution and the smaller are the grain sizes.

19.
Materials (Basel) ; 12(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085981

RESUMO

Osteosynthesis absorbable materials made of uncalcined and unsintered hydroxyapatite (u-HA) particles, poly-l-lactide (PLLA), and u-HA/PLLA are bioresorbable, and these plate systems have feasible bioactive osteoconductive capacities. However, their strength and stability for fixation in mandibular subcondylar fractures remain unclear. This in vitro study aimed to assess the biomechanical strength of u-HA/PLLA bioresorbable plate systems after internal fixation of mandibular subcondylar fractures. Tensile and shear strength were measured for each u-HA/PLLA and titanium plate system. To evaluate biomechanical behavior, 20 hemimandible replicas were divided into 10 groups, each comprising a titanium plate and a bioresorbable plate. A linear load was applied anteroposteriorly and lateromedially to each group to simulate the muscular forces in mandibular condylar fractures. All samples were analyzed for each displacement load and the displacement obtained by the maximum load. Tensile and shear strength of the u-HA/PLLA plate were each approximately 45% of those of the titanium plates. Mechanical resistance was worst in the u-HA/PLLA plate initially loaded anteroposteriorly. Titanium plates showed the best mechanical resistance during lateromedial loading. Notably, both plates showed similar resistance when a lateromedially load was applied. In the biomechanical evaluation of mandibular condylar fracture treatment, the u-HA/PLLA plates had sufficiently high resistance in the two-plate fixation method.

20.
Materials (Basel) ; 10(7)2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28773126

RESUMO

OSTEOTRANS MX® (Takiron Co., Ltd., Osaka, Japan) is a bioactive resorbable maxillofacial osteosynthetic material composed of an unsintered hydroxyapatite/poly-l-lactide composite, and its effective osteoconductive capacity has been previously documented. However, the mechanical strength of this plate system is unclear. Thus, the aim of this in vitro study was to assess its tensile and shear strength and evaluate the biomechanical intensity of different osteosynthesis plate designs after sagittal split ramus osteotomy by simulating masticatory forces in a clinical setting. For tensile and shear strength analyses, three mechanical strength measurement samples were prepared by fixing unsintered hydroxyapatite/poly-l-lactide composed plates to polycarbonate skeletal models. Regarding biomechanical loading evaluation, 12 mandibular replicas were used and divided into four groups for sagittal split ramus osteotomy fixation. Each sample was secured in a jig and subjected to vertical load on the first molar teeth. Regarding shear strength, the novel-shaped unsintered hydroxyapatite/poly-l-lactide plate had significantly high intensity. Upon biomechanical loading evaluation, this plate system also displayed significantly high stability in addition to bioactivity, with no observed plate fracture. Thus, we have clearly demonstrated the efficacy of this plate system using an in vitro model of bilateral sagittal split ramus osteotomy of the mandible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA