Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Gene Med ; 25(11): e3548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37580943

RESUMO

BACKGROUND: Metastasis poses the greatest threat to the lives of individuals with prostate cancer. Therefore, it is imperative to identify the underlying mechanism driving metastasis. Doing so would facilitate the detection of new diagnostic biomarkers and the advancement of treatment options for patients. METHODS: Metastasis-related modules were identified through weighted gene co-expression network analysis based on microarray GSE6919. Hub genes were confirmed by quantitative real-time PCR across different prostate cell lines and clinic samples. Pivotal genes were determined through integration of RNA and transcription factor-target associated interactions. To predict drugs with potential to suppress tumor metastasis, we applied molecular networks using the DrugBank database. Drug repositioning analysis and confirmation of drug screen were conducted using the compound library. Confirmation of selective cytotoxicity of cupric oxide was carried out via invasion, transwell and apoptosis assays. RESULTS: We identified five metastasis-related modules. Of these modules, two were identified to represent core dysfunction modules in which five hub genes were determined for each module. Five of these 10 genes correlating with prostate cancer progression. Furthermore, our analysis revealed that there are 36 drugs with the potential to be active against tumor metastasis. Finally, we identified four compounds that have not previously been reported to have any association with cancer therapy. Of these, cupric oxide was determined to have the best chemotherapeutic potential in treating prostate cancer metastasis. CONCLUSIONS: By combining bioinformatics methods with compound library screening, this study proposes a valuable approach to drug discovery. Cupric oxide showed the potential in the treatment of prostate cancer metastasis and deserves further study.


Assuntos
Redes Reguladoras de Genes , Neoplasias da Próstata , Masculino , Humanos , Detecção Precoce de Câncer , Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Biologia Computacional/métodos
2.
Appl Environ Microbiol ; 89(2): e0170122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651742

RESUMO

Campylobacter jejuni is a leading cause of foodborne bacterial gastroenteritis worldwide, and raw or undercooked chicken meat is considered the major source of human campylobacteriosis. In this study, we identified 36 compounds that showed inhibitory effects on C. jejuni growth at low concentrations by screening a chemical compound library. Three of the 36 compounds were herbal compounds, including tryptanthrin (TRP), an indoloquinazoline alkaloid. TRP has been reported to have a variety of biological properties, such as antimicrobial, anti-inflammatory, and antitumor activities, but there was previously no information about its anti-C. jejuni activity. We further conducted in vitro and in vivo experiments to evaluate the potential of TRP for the control of C. jejuni in chicken farms. The MIC of TRP for C. jejuni was much lower than that of 13 other herbal compounds that were previously reported to have anti-C. jejuni activities. Time-kill assays under growing and nongrowing conditions demonstrated that TRP has bactericidal activity against C. jejuni. In addition, TRP showed a narrow-spectrum antimicrobial effect against C. jejuni, and there was little potential for the development of TRP-resistant C. jejuni during serially passaged culture. In chick infection experiments, the administration of TRP in drinking water significantly reduced the cecal colonization of C. jejuni when TRP was used either before or after C. jejuni infection. These data suggest that TRP is effective for the control of C. jejuni in chicken farms. IMPORTANCE Campylobacter is a widespread pathogen in the food chain of chickens. Once chickens become infected, large numbers of Campylobacter cells are excreted in their feces. The development of an effective material for reducing the amount of Campylobacter in the chicken intestinal tract will make it possible to reduce the contamination of the food chain with Campylobacter and to produce safe and secure chicken meat. In the present study, in vivo experiments revealed that the use of an herbal compound, tryptanthrin, significantly reduced the number of Campylobacter cells in the chicken gut by a bactericidal mechanism. Furthermore, our in vitro experiments demonstrated that, compared with the other herbal compounds, tryptanthrin achieved antimicrobial activity against C. jejuni at the lowest concentration. The use of tryptanthrin may lead to the development of a novel control measure for reducing the colonization of C. jejuni in the food chain.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Doenças das Aves Domésticas , Animais , Humanos , Galinhas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia
3.
Mol Divers ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902900

RESUMO

Molecular Property Diagnostic Suite Compound Library (MPDS-CL) is an open-source Galaxy-based cheminformatics web portal which presents a structure-based classification of the molecules. A structure-based classification of nearly 150 million unique compounds, obtained from 42 publicly available databases and curated for redundancy removal through 97 hierarchically well-defined atom composition-based portions, has been done. These are further subjected to 56-bit fingerprint-based classification algorithm which led to the formation of 56 structurally well-defined classes. The classes thus obtained were further divided into clusters based on their molecular weight. Thus, the entire set of molecules was put into 56 different classes and 625 clusters. This led to the assignment of a unique ID, named as MPDS-AadharID, for each of these 149,169,443 molecules. MPDS-AadharID is akin to the unique number given to citizens in India (similar to SSN in the US and NINO in the UK). The unique features of MPDS-CL are (a) several search options, such as exact structure search, substructure search, property-based search, fingerprint-based search, using SMILES, InChIKey and key-in; (b) automatic generation of information for the processing for MPDS and other galaxy tools; (c) providing the class and cluster of a molecule which makes it easier and fast to search for similar molecules and (d) information related to the presence of the molecules in multiple databases. The MPDS-CL can be accessed at https://mpds.neist.res.in:8086/ .

4.
Mar Drugs ; 21(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37888447

RESUMO

With the emergence of drug resistance and the consequential high morbidity and mortality rates, there is an urgent need to screen and identify new agents for the effective treatment of cancer. Terphenyls-a group of aromatic hydrocarbons consisting of a linear 1,4-diaryl-substituted benzene core-has exhibited a wide range of biological activities. In this study, we discovered a terphenyllin derivative-CHNQD-00824-derived from the marine compound library as a potential anticancer agent. The cytotoxic activities of the CHNQD-00824 compound were evaluated against 13 different cell lines with IC50 values from 0.16 to 7.64 µM. Further study showed that CHNQD-00824 inhibited the proliferation and migration of cancer cells, possibly by inducing DNA damage. Acridine orange staining demonstrated that CHNQD-00824 promoted apoptosis in zebrafish embryos. Notably, the anti-cancer effectiveness was verified in a doxycin hydrochloride (DOX)-induced liver-specific enlargement model in zebrafish. With Solafinib as a positive control, CHNQD-00824 markedly suppressed tumor growth at concentrations of 2.5 and 5 µM, further highlighting its potential as an effective anticancer agent.


Assuntos
Antineoplásicos , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Apoptose , Dano ao DNA , Relação Estrutura-Atividade , Estrutura Molecular
5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445672

RESUMO

There is an urgent need to identify efficient antiviral compounds to combat existing and emerging RNA virus infections, particularly those related to seasonal and pandemic influenza outbreaks. While inhibitors of the influenza viral integral membrane proton channel protein (M2), neuraminidase (NA), and cap-dependent endonuclease are available, circulating influenza viruses acquire resistance over time. Thus, the need for the development of additional anti-influenza drugs with novel mechanisms of action exists. In the present study, a cell-based screening assay and a small molecule library were used to screen for activities that antagonized influenza A non-structural protein 1 (NS1), a highly conserved, multifunctional accessory protein that inhibits the type I interferon response against influenza. Two potential anti-influenza agents, compounds 157 and 164, were identified with anti-NS1 activity, resulting in the reduction of A/PR/8/34(H1N1) influenza A virus replication and the restoration of IFN-ß expression in human lung epithelial A549 cells. A 3D pharmacophore modeling study of the active compounds provided a glimpse of the structural motifs that may contribute to anti-influenza virus activity. This screening approach is amenable to a broader analysis of small molecule compounds to inhibit other viral targets.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Interferon Tipo I/metabolismo , Proteínas não Estruturais Virais/metabolismo , Influenza Humana/tratamento farmacológico , Vírus da Influenza A/genética , Antivirais/farmacologia , Antivirais/metabolismo , Replicação Viral
6.
Bioorg Chem ; 119: 105581, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990933

RESUMO

The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Piperazina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Nitritos/análise , Piperazina/síntese química , Piperazina/química , Relação Estrutura-Atividade
7.
Chemistry ; 27(28): 7764-7772, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33848033

RESUMO

The introduction of substituents on bare heterocyclic scaffolds can selectively be achieved by directed C-H functionalization. However, such methods have only occasionally been used, in an iterative manner, to decorate various positions of a medicinal scaffold to build chemical libraries. We herein report the multiple, site selective, metal-catalyzed C-H functionalization of a "programmed" 4-hydroxyquinoline. This medicinally privileged template indeed possesses multiple reactive sites for diversity-oriented functionalization, of which four were targeted. The C-2 and C-8 decorations were directed by an N-oxide, before taking benefit of an O-carbamoyl protection at C-4 to perform a Fries rearrangement and install a carboxamide at C-3. This also released the carbonyl group of 4-quinolones, the ultimate directing group to functionalize position 5. Our study highlights the power of multiple C-H functionalization to generate diversity in a biologically relevant library, after showing its strong antimalarial potential.

8.
Bioorg Med Chem ; 47: 116393, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509862

RESUMO

The continued toll of COVID-19 has halted the smooth functioning of civilization on a global scale. With a limited understanding of all the essential components of viral machinery and the lack of structural information of this new virus, initial drug discovery efforts had limited success. The availability of high-resolution crystal structures of functionally essential SARS-CoV-2 proteins, including 3CLpro, supports the development of target-specific therapeutics. 3CLpro, the main protease responsible for the processing of viral polypeptide, plays a vital role in SARS-CoV-2 viral replication and translation and is an important target in other coronaviruses. Additionally, 3CLpro is the target of repurposed drugs, such as lopinavir and ritonavir. In this study, target proteins were retrieved from the protein data bank (PDB IDs: 6 M03, 6LU7, 2GZ7, 6 W63, 6SQS, 6YB7, and 6YVF) representing different open states of the main protease to accommodate macromolecular substrate. A hydroxyethylamine (HEA) library was constructed from harvested chemical structures from all the series being used in our laboratories for screening against malaria and Leishmania parasites. The database consisted of ∼1000 structure entries, of which 70% were new to ChemSpider at the time of screening. This in-house library was subjected to high throughput virtual screening (HTVS), followed by standard precision (SP) and then extra precision (XP) docking (Schrodinger LLC 2021). The ligand strain and complex energy of top hits were calculated by Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method. Promising hit compounds (n = 40) specifically binding to 3CLpro with high energy and average MM/GBSA scores were then subjected to (100-ns) MD simulations. Using this sequential selection followed by an in-silico validation approach, we found a promising HEA-based compound (N,N'-((3S,3'S)-piperazine-1,4-diylbis(3-hydroxy-1-phenylbutane-4,2-diyl))bis(2-(5-methyl-1,3-dioxoisoindolin-2-yl)-3-phenylpropanamide)), which showed high in vitro antiviral activity against SARS-CoV-2. Further to reduce the size of the otherwise larger ligand, a pharmacophore-based predicted library of âˆ¼42 derivatives was constructed, which were added to the previous compound library and rescreened virtually. Out of several hits from the predicted library, two compounds were synthesized, tested against SARS-CoV-2 culture, and found to have markedly improved antiviral activity.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Etilaminas/química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus/metabolismo , Etilaminas/metabolismo , Etilaminas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2/isolamento & purificação , Termodinâmica , Células Vero
9.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572565

RESUMO

Connexin gap junctions (Cx GJs) enable the passage of small molecules and ions between cells and are therefore important for cell-to-cell communication. Their dysfunction is associated with diseases, and small molecules acting as modulators of GJs may therefore be useful as therapeutic drugs. To identify GJ modulators, suitable assays are needed that allow compound screening. In the present study, we established a novel assay utilizing HeLa cells recombinantly expressing Cx43. Donor cells additionally expressing the Gs protein-coupled adenosine A2A receptor, and biosensor cells expressing a cAMP-sensitive GloSensor luciferase were established. Adenosine A2A receptor activation in the donor cells using a selective agonist results in intracellular cAMP production. The negatively charged cAMP migrates via the Cx43 gap junctions to the biosensor cells and can there be measured by the cAMP-dependent luminescence signal. Cx43 GJ modulators can be expected to impact the transfer of cAMP from the donor to the biosensor cells, since cAMP transit is only possible via GJs. The new assay was validated by testing the standard GJ inhibitor carbenoxolon, which showed a concentration-dependent inhibition of the signal and an IC50 value that was consistent with previously reported values. The assay was demonstrated to be suitable for high-throughput screening.


Assuntos
Carbenoxolona/farmacologia , Comunicação Celular/efeitos dos fármacos , Conexina 43/metabolismo , AMP Cíclico/metabolismo , Técnicas Biossensoriais , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Junções Comunicantes/efeitos dos fármacos , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Luciferases
10.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360558

RESUMO

Experimental screening of large sets of compounds against macromolecular targets is a key strategy to identify novel bioactivities. However, large-scale screening requires substantial experimental resources and is time-consuming and challenging. Therefore, small to medium-sized compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest would be of great value to fields related to early drug discovery, in particular biochemical and cell research. Here, we present a computational approach that incorporates drug-likeness, predicted bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries with maximized chances of producing genuine hits for a wide range of proteins. The computational approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a validated, similarity-based approach, and optimizes the composition of small sets of compounds towards maximum target coverage and novelty. We found that, in comparison to the random selection of compounds for a library, our approach generates substantially improved compound sets. Quantified as the "fitness" of compound libraries, the calculated improvements ranged from +60% (for a library of 15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound libraries prepared in this work are available for download as a dataset bundle ("BonMOLière").


Assuntos
Algoritmos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala/normas , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Humanos
11.
Cytometry A ; 97(8): 845-851, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31876358

RESUMO

In the last decade, screening compound libraries on live cells has become an important step in drug discovery. The abundance of compounds in these libraries requires effective high-throughput (HT) analyzing methods. Although current cell-based assay protocols are suitable for HT analyses, the analysis itself is often restrained to simple, singular outcomes. Incorporation of HT samplers on flow cytometers has provided an interesting approach to increase the number of measurable parameters and increase the sensitivity and specificity of analyses. Nonetheless, to date, the labor intensive and time-consuming strategies to detach and stain adherent cells before flow cytometric analysis has restricted use of HT flow cytometry (HTFC) to suspension cells. We have developed a universal "no-touch" HTFC antibody staining protocol in 384-well microplates to bypass washing and centrifuging steps of conventional flow cytometry protocols. Optimizing culture conditions, cell-detachment and staining strategies in 384-well microplates resulted in an HTFC protocol with an optimal stain index with minimal background staining. The method has been validated using six adherent cell lines and simultaneous staining of four parameters. This HT screening protocol allows for effective monitoring of multiple cellular markers simultaneously, thereby increasing informativity and cost-effectiveness of drug screening. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Coloração e Rotulagem
12.
Mar Drugs ; 18(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183121

RESUMO

Toxoplasma gondii is a major protozoan parasite and infects human and many other warm-blooded animals. The infection leads to Toxoplasmosis, a serious issue in AIDS patients, organ transplant recipients and pregnant women. Neospora caninum, another type of protozoa, is closely related to Toxoplasma gondii. Infections of the protozoa in animals also causes serious diseases such as Encephalomyelitis and Myositis-Polyradiculitis in dogs or abortion in cows. Both Toxoplasma gondii and Neospora caninum have similar nucleoside triphosphate hydrolases (NTPase), NcNTPase and TgNTPase-I in Neospora caninum and Toxoplasma gondii, respectively. These possibly play important roles in propagation and survival. Thus, we targeted the enzymes for drug discovery and tried to establish a novel high-standard assay by a combination of original biochemical enzyme assay and fluorescent assay to determine ADP content. We then validated whether or not it can be applied to high-throughput screening (HTS). Then, it fulfilled criterion to carry out HTS in both of the enzymes. In order to identify small molecules having inhibitory effects on the protozoan enzyme, we also performed HTS using two synthetic compound libraries and an extract library derived from marine bacteria and then, identified 19 compounds and 6 extracts. Nagasaki University collected many extracts from over 18,000 marine bacteria found in local Omura bay, and continues to compile an extensive collection of synthetic compounds from numerous drug libraries established by Japanese chemists.


Assuntos
Medições Luminescentes , Neospora/enzimologia , Nucleosídeo-Trifosfatase/análise , Toxoplasma/enzimologia , Animais , Humanos
13.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050052

RESUMO

The screening of chemical libraries based on cellular biosensors is a useful approach to identify new hits for novel therapeutic targets involved in rare genetic pathologies, such as ß-thalassemia and sickle cell disease. In particular, pharmacologically mediated stimulation of human γ-globin gene expression, and increase of fetal hemoglobin (HbF) production, have been suggested as potential therapeutic strategies for these hemoglobinopathies. In this article, we screened a small chemical library, constituted of 150 compounds, using the cellular biosensor K562.GR, carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and ß-globin gene promoters, respectively. Then the identified compounds were analyzed as HbF inducers on primary cell cultures, obtained from ß-thalassemia patients, confirming their activity as HbF inducers, and suggesting these molecules as lead compounds for further chemical and biological investigations.


Assuntos
Anemia Falciforme/sangue , Descoberta de Drogas/métodos , Hemoglobina Fetal/biossíntese , Biossíntese de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Talassemia beta/sangue , Anemia Falciforme/tratamento farmacológico , Técnicas Biossensoriais/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Proteínas Luminescentes/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Globinas beta/genética , Talassemia beta/tratamento farmacológico , gama-Globinas/genética , Proteína Vermelha Fluorescente
14.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085549

RESUMO

Flow chemistry is one of the most prominent enabling technologies that has greatly shaped the way chemists' approach organic synthesis. Specifically, in drug discovery, the advantages of flow techniques over batch procedures allow the rapid and efficient assembly of compound libraries to be tested for biological properties. The aim of the present review is to comment on some representative examples from the last five years of literature that highlight how flow procedures are becoming of increasing importance for the synthesis of biologically-relevant molecules.


Assuntos
Reologia , Bibliotecas de Moléculas Pequenas , Luz , Microfluídica , Ultrassom , Ureia/química
15.
Bioorg Med Chem ; 26(11): 3021-3029, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764757

RESUMO

Screening a 3-aminopyridin-2-one based fragment library against a 26-kinase panel representative of the human kinome identified 3-amino-5-(1-methyl-1H-pyrazol-4-yl)pyridin-2(1H)-one (2) and 3-amino-5-(pyridin-4-yl)pyridin-2(1H)-one (3) as ligand efficient inhibitors of the mitotic kinase Monopolar Spindle 1 (MPS1) and the Aurora kinase family. These kinases are well recognised as attractive targets for therapeutic intervention for treating cancer. Elucidation of the binding mode of these fragments and their analogues has been carried out by X-ray crystallography. Structural studies have identified key interactions with a conserved lysine residue and have highlighted potential regions of MPS1 which could be targeted to improve activity and selectivity.


Assuntos
Aminopiridinas/química , Sistemas de Liberação de Medicamentos , Fragmentos de Peptídeos/síntese química , Inibidores de Proteínas Quinases , Aminopiridinas/síntese química , Aminopiridinas/farmacologia , Cristalografia por Raios X , Concentração Inibidora 50 , Estrutura Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
16.
Molecules ; 24(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577607

RESUMO

We herein describe a flexible synthesis of a small library of 68Ga-labeled CAIX-targeted molecules via an orthogonal 2-cyanobenzothiazole (CBT)/1,2-aminothiol click reaction. Three novel CBT-functionalized chelators (1⁻3) were successfully synthesized and labeled with the positron emitter gallium-68. Cross-ligation between the pre-labeled bifunctional chelators (BFCs) and the 1,2-aminothiol-acetazolamide derivatives (8 and 9) yielded six new 68Ga-labeled CAIX ligands with high radiochemical yields. The click reaction conditions were optimized to improve the reaction rate for applications with short half-life radionuclides. Overall, our methodology allows for a simple and efficient radiosynthetic route to produce a variety of 68Ga-labeled imaging agents for tumor hypoxia.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Anidrase Carbônica IX/química , Química Click , Radioisótopos de Gálio/química , Nitrilas/química , Nitrilas/farmacologia , Benzotiazóis/síntese química , Cromatografia Líquida de Alta Pressão , Humanos , Marcação por Isótopo , Nitrilas/síntese química , Compostos Radiofarmacêuticos , Bibliotecas de Moléculas Pequenas
17.
Bioorg Med Chem Lett ; 27(1): 24-29, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890378

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors have attractive therapeutic potential in respiratory, inflammatory, metabolic and CNS disorders. The present work details the design, chemical exploration and biological profile of a novel PDE4 inhibitor chemotype. A diazepinone ring was identified as an under-represented heterocyclic system fulfilling a set of PDE4 structure-based design hypotheses. Rapid exploration of the structure activity relationships for the series was enabled by robust and scalable two/three-steps parallel chemistry protocols. The resulting compounds demonstrated PDE4 inhibitory activity in cell free and cell-based assays comparable to the Zardaverine control used, suggesting potential avenues for their further development.


Assuntos
Azepinas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Desenho de Fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Azepinas/síntese química , Azepinas/química , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
18.
Bioorg Med Chem Lett ; 27(9): 2029-2037, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320616

RESUMO

In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10µM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078µM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525µM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.


Assuntos
Descoberta de Drogas/métodos , Embrião não Mamífero/efeitos dos fármacos , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Peixe-Zebra/embriologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Embrião não Mamífero/enzimologia , Ativação Enzimática/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
19.
Bioorg Med Chem ; 25(6): 1787-1794, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28190654

RESUMO

We describe here a novel chemotype with substituted benzimidazole scaffold for nonsteroidal farnesoid X receptor (FXR) antagonists starting from the identification of a screening hit, BB-4. Structure diversity in four regions A-D of BB-4 or 1 is discussed. In particular, regions A and C had an effect on an antagonism against FXR as demonstrated by the derivatives represented by 7 and 15, respectively. Thus, compound 19 arising from the combination of regions A and C underscored an important fact on antagonism against FXR, also showing the reduced small heterodimer partner and the increased cholesterol 7α-hydroxylase expression levels.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Benzimidazóis/química , Linhagem Celular Tumoral , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 24(21): 5127-5133, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27595538

RESUMO

Adenosine kinase (AdK) is a key player in controlling intra- and extracellular concentrations of the signaling molecule adenosine. Extensive evidence points to an important role of AdK in several diseases, and suggests that AdK inhibition might be a promising therapeutic strategy. The development of a new AdK assay and subsequent screening of part of our focused compound library led to the identification of 12 hit compounds (hit rate of 6%) representing six new classes of non-nucleoside human AdK inhibitors. The most potent inhibitor 1 displayed a Ki value of 184nM. Compound screening with a newly developed assay was useful and efficient for discovering novel AdK inhibitors which may serve as lead structures for developing drugs for adenosine augmentation therapy.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Adenosina Quinase/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA