Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36744334

RESUMO

BACKGROUND: The oxidative stress hypothesis is challenging the dominant position of amyloid-ß (Aß) in the field of understanding the mechanisms of Alzheimer's disease (AD), a complicated and untreatable neurodegenerative disease. OBJECTIVE: The goal of the present study was to uncover the oxidative stress mechanisms causing AD, as well as the potential therapeutic targets and neuroprotective drugs against oxidative stress mechanisms. METHODS: In this study, a systematic workflow combining pharmacological experiments and computational prediction were proposed. 222 drugs and natural products were collected first and then tested on SH-SY5Y cells to obtain phenotypic screening data on neuroprotection. The preliminary screening data were integrated with drug-target interactions (DTIs) and multi-scale biomedical data, which were analyzed with statistical tests and gene set enrichment analysis. A polypharmacology network was further constructed for investigation. RESULTS: 340 DTIs were matched in multiple databases, and 222 cell viability ratios were calculated for experimental compounds. We identified significant potential therapeutic targets based on oxidative stress mechanisms for AD, including NR3C1, SHBG, ESR1, PGR, and AVPR1A, which might be closely related to neuroprotective effects and pathogenesis. 50% of the top 14 enriched pathways were found to correlate with AD, such as arachidonic acid metabolism and neuroactive ligand-receptor interaction. Several approved drugs in this research were also found to exert neuroprotective effects against oxidative stress mechanisms, including beclometasone, methylprednisolone, and conivaptan. CONCLUSION: Our results indicated that NR3C1, SHBG, ESR1, PGR, and AVPR1A were promising therapeutic targets and several drugs may be repurposed from the perspective of oxidative stress and AD.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36866242

RESUMO

Computational systems biology (CSB) is a field that emerged primarily as the product of research activities. As such, it grew in several directions in a distributed and uncoordinated manner making the area appealing and fascinating. The idea of not having to follow a specific path but instead creating one fueled innovation. As the field matured, several interdisciplinary graduate programs emerged attempting to educate future generations of computational systems biologists. These educational initiatives coordinated the dissemination of information across student populations that had already decided to specialize in this field. However, we are now entering an era where CSB, having established itself as a valuable research discipline, is attempting the next major step: Entering undergraduate curricula. As interesting as this endeavor may sound, it has several difficulties, mainly because the field is not uniformly defined. In this manuscript, we argue that this diversity is a significant advantage and that several incarnations of an undergraduate-level CSB biology course could, and should, be developed tailored to programmatic needs. In this manuscript, we share our experiences creating a course as part of a Biomedical Engineering program.

3.
Front Pharmacol ; 13: 894427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694259

RESUMO

Ischemic stroke (IS) is an acute neurological injury that occurs when a vessel supplying blood to the brain is obstructed, which is a leading cause of death and disability. Salvia miltiorrhiza has been used in the treatment of cardiovascular and cerebrovascular diseases for over thousands of years due to its effect activating blood circulation and dissipating blood stasis. However, the herbal preparation is chemically complex and the diversity of potential targets makes difficult to determine its mechanism of action. To gain insight into its mechanism of action, we analyzed "Salvianolic acid for injection" (SAFI), a traditional Chinese herbal medicine with anti-IS effects, using computational systems pharmacology. The potential targets of SAFI, obtained from literature mining and database searches, were compared with IS-associated genes, giving 38 common genes that were related with pathways involved in inflammatory response. This suggests that SAFI might function as an anti-inflammatory agent. Two genes associated with inflammation (PTGS1 and PTGS2), which were inhibited by SAFI, were preliminarily validated in vitro. The results showed that SAFI inhibited PTGS1 and PTGS2 activity in a dose-dependent manner and inhibited the production of prostaglandin E2 induced by lipopolysaccharide in RAW264.7 macrophages and BV-2 microglia. This approach reveals the possible pharmacological mechanism of SAFI acting on IS, and also provides a feasible way to elucidate the mechanism of traditional Chinese medicine (TCM).

4.
ACS Chem Neurosci ; 11(20): 3245-3258, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966035

RESUMO

More than 50 million adults in America suffer from chronic pain. Opioids are commonly prescribed for their effectiveness in relieving many types of pain. However, excessive prescribing of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory drugs (NSAIDs), another major class of analgesic, also have many problematic side effects including headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and drowsiness. There is an urgent need for the understanding of molecular mechanisms that underlie drug abuse and addiction to aid in the design of new preventive or therapeutic agents for pain management. To facilitate pain related small-molecule signaling pathway studies and the prediction of potential therapeutic target(s) for the treatment of pain, we have constructed a comprehensive platform of a pain domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated data mining computing tools. Our new computing platform describes the chemical molecules, genes, proteins, and signaling pathways involved in pain regulation. Pain-CKB is implemented with a friendly user interface for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, and Spider Plot. Combining these with other novel tools, we performed three case studies to systematically demonstrate how further studies can be conducted based on the data generated from Pain-CKB and its algorithms and tools. First, systems pharmacology target mapping was carried out for four FDA approved analgesics in order to identify the known target and predict off-target interactions. Subsequently, the target mapping outcomes were applied to build physiologically based pharmacokinetic (PBPK) models for acetaminophen and fentanyl to explore the drug-drug interaction (DDI) between this pair of drugs. Finally, pharmaco-analytics was conducted to explore the detailed interaction pattern of acetaminophen reactive metabolite and its hepatotoxicity target, thioredoxin reductase.


Assuntos
Analgésicos Opioides , Preparações Farmacêuticas , Interações Medicamentosas , Fentanila , Bases de Conhecimento
5.
ACS Chem Neurosci ; 10(8): 3486-3499, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31257858

RESUMO

The United States of America is fighting against one of its worst-ever drug crises. Over 900 people a week die from opioid- or heroin-related overdoses, while millions more suffer from opioid prescription addiction. Recently, drug overdoses caused by fentanyl-laced cocaine specifically are on the rise. Due to drug synergy and an increase in side effects, polydrug addiction can cause more risk than addiction to a single drug. In the present work, we systematically analyzed the overdose and addiction mechanism of cocaine and fentanyl. First, we applied our established chemogenomics knowledgebase and machine-learning-based methods to map out the potential and known proteins, transporters, and metabolic enzymes and the potential therapeutic target(s) for cocaine and fentanyl. Sequentially, we looked into the detail of (1) the addiction to cocaine and fentanyl by binding to the dopamine transporter and the µ opioid receptor (DAT and µOR, respectively), (2) the potential drug-drug interaction of cocaine and fentanyl via p-glycoprotein (P-gp) efflux, (3) the metabolism of cocaine and fentanyl in CYP3A4, and (4) the physiologically based pharmacokinetic (PBPK) model for two drugs and their drug-drug interaction at the absorption, distribution, metabolism, and excretion (ADME) level. Finally, we looked into the detail of JWH133, an agonist of cannabinoid 2-receptor (CB2) with potential as a therapy for cocaine and fentanyl overdose. All these results provide a better understanding of fentanyl and cocaine polydrug addiction and future drug abuse prevention.


Assuntos
Cocaína , Overdose de Drogas , Fentanila , Aprendizado de Máquina , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides , Cocaína/efeitos adversos , Cocaína/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Simulação por Computador , Overdose de Drogas/metabolismo , Fentanila/efeitos adversos , Fentanila/metabolismo , Fentanila/farmacologia , Humanos
6.
Front Pharmacol ; 9: 668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997503

RESUMO

Traditional Chinese medicine (TCM) is typically prescribed as formula to treat certain symptoms. A TCM formula contains hundreds of chemical components, which makes it complicated to elucidate the molecular mechanisms of TCM. Here, we proposed a computational systems pharmacology approach consisting of network link prediction, statistical analysis, and bioinformatics tools to investigate the molecular mechanisms of TCM formulae. Taking formula Tian-Ma-Gou-Teng-Yin as an example, which shows pharmacological effects on Alzheimer's disease (AD) and its mechanism is unclear, we first identified 494 formula components together with corresponding 178 known targets, and then predicted 364 potential targets for these components with our balanced substructure-drug-target network-based inference method. With Fisher's exact test and statistical analysis we identified 12 compounds to be most significantly related to AD. The target genes of these compounds were further enriched onto pathways involved in AD, such as neuroactive ligand-receptor interaction, serotonergic synapse, inflammatory mediator regulation of transient receptor potential channel and calcium signaling pathway. By regulating key target genes, such as ACHE, HTR2A, NOS2, and TRPA1, the formula could have neuroprotective and anti-neuroinflammatory effects against the progression of AD. Our approach provided a holistic perspective to study the relevance between TCM formulae and diseases, and implied possible pharmacological effects of TCM components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA