Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2109934119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394880

RESUMO

Photoreceptor connecting cilium (CC) is structurally analogous to the transition zone (TZ) of primary cilia and gates the molecular trafficking between the inner and the outer segment (OS). Retinal dystrophies with underlying CC defects are manifested in a broad array of syndromic conditions known as ciliopathies as well as nonsyndromic retinal degenerations. Despite extensive studies, many questions remain in the mechanism of protein trafficking across the photoreceptor CC. Here, we genetically inactivated mouse Tmem138, a gene encoding a putative transmembrane protein localized to the ciliary TZ and linked to ciliopathies. Germline deletion of Tmem138 abolished OS morphogenesis, followed by rapid photoreceptor degeneration. Tmem138 was found localized to the photoreceptor CC and was required for localization of Ahi1 to the distal subdomain of the CC. Among the examined set of OS proteins, rhodopsin was mislocalized throughout the mutant cell body prior to OS morphogenesis. Ablation of Tmem138 in mature rods recapitulated the molecular changes in the germline mutants, causing failure of disc renewal and disintegration of the OS. Furthermore, Tmem138 interacts reciprocally with rhodopsin and a related protein Tmem231, and the ciliary localization of the latter was also altered in the mutant photoreceptors. Taken together, these results suggest a crucial role of Tmem138 in the functional organization of the CC, which is essential for rhodopsin localization and OS biogenesis.


Assuntos
Ciliopatias , Degeneração Retiniana , Cílios/metabolismo , Ciliopatias/metabolismo , Humanos , Proteínas de Membrana , Cílio Conector dos Fotorreceptores , Degeneração Retiniana/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
2.
Adv Exp Med Biol ; 1415: 395-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440063

RESUMO

The small size of ciliary structures that underlies photoreceptor function and inherited ciliopathies requires imaging techniques adapted to visualizing them at the highest possible resolution. In addition to powerful super-resolution imaging modalities, emerging approaches to sample preparation, including expansion microscopy (ExM), can provide a robust route to imaging specific molecules at the nanoscale level in the retina. We describe a protocol for applying ExM to whole retinas in order to achieve nanoscale fluorescence imaging of ciliary markers, including tubulin, CEP290, centrin, and CEP164. The results are consistent with those from other super-resolution fluorescence techniques and reveal new insights into their arrangements with respect to the subcompartments of photoreceptor cilia. This technique is complimentary to other imaging modalities used in retinal imaging, and can be carried out in virtually any laboratory, without the need for expensive specialized equipment.


Assuntos
Cílios , Microscopia , Camundongos , Animais , Retina/diagnóstico por imagem , Células Fotorreceptoras
3.
J Biol Chem ; 296: 100529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711342

RESUMO

INPP5E, also known as pharbin, is a ubiquitously expressed phosphatidylinositol polyphosphate 5-phosphatase that is typically located in the primary cilia and modulates the phosphoinositide composition of membranes. Mutations to or loss of INPP5E is associated with ciliary dysfunction. INPP5E missense mutations of the phosphatase catalytic domain cause Joubert syndrome in humans-a syndromic ciliopathy affecting multiple tissues including the brain, liver, kidney, and retina. In contrast to other primary cilia, photoreceptor INPP5E is prominently expressed in the inner segment and connecting cilium and absent in the outer segment, which is a modified primary cilium dedicated to phototransduction. To investigate how loss of INPP5e causes retina degeneration, we generated mice with a retina-specific KO (Inpp5eF/F;Six3Cre, abbreviated as retInpp5e-/-). These mice exhibit a rapidly progressing rod-cone degeneration resembling Leber congenital amaurosis that is nearly completed by postnatal day 21 (P21) in the central retina. Mutant cone outer segments contain vesicles instead of discs as early as P8. Although P10 mutant outer segments contain structural and phototransduction proteins, axonemal structure and disc membranes fail to form. Connecting cilia of retInpp5e-/- rods display accumulation of intraflagellar transport particles A and B at their distal ends, suggesting disrupted intraflagellar transport. Although INPP5E ablation may not prevent delivery of outer segment-specific proteins by means of the photoreceptor secretory pathway, its absence prevents the assembly of axonemal and disc components. Herein, we suggest a model for INPP5E-Leber congenital amaurosis, proposing how deletion of INPP5E may interrupt axoneme extension and disc membrane elaboration.


Assuntos
Axonema/patologia , Morfogênese , Monoéster Fosfórico Hidrolases/fisiologia , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Animais , Axonema/metabolismo , Proteínas do Olho/fisiologia , Camundongos , Camundongos Knockout , Transporte Proteico , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/etiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
4.
J Biol Chem ; 294(26): 10104-10119, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31073028

RESUMO

Although the slit diaphragm proteins in podocytes are uniquely organized to maintain glomerular filtration assembly and function, little is known about the underlying mechanisms that participate in trafficking these proteins to the correct location for development and homeostasis. Identifying these mechanisms will likely provide novel targets for therapeutic intervention to preserve podocyte function following glomerular injury. Analysis of structural variation in cases of human nephrotic syndrome identified rare heterozygous deletions of EXOC4 in two patients. This suggested that disruption of the highly-conserved eight-protein exocyst trafficking complex could have a role in podocyte dysfunction. Indeed, mRNA profiling of injured podocytes identified significant exocyst down-regulation. To test the hypothesis that the exocyst is centrally involved in podocyte development/function, we generated homozygous podocyte-specific Exoc5 (a central exocyst component that interacts with Exoc4) knockout mice that showed massive proteinuria and died within 4 weeks of birth. Histological and ultrastructural analysis of these mice showed severe glomerular defects with increased fibrosis, proteinaceous casts, effaced podocytes, and loss of the slit diaphragm. Immunofluorescence analysis revealed that Neph1 and Nephrin, major slit diaphragm constituents, were mislocalized and/or lost. mRNA profiling of Exoc5 knockdown podocytes showed that vesicular trafficking was the most affected cellular event. Mapping of signaling pathways and Western blot analysis revealed significant up-regulation of the mitogen-activated protein kinase and transforming growth factor-ß pathways in Exoc5 knockdown podocytes and in the glomeruli of podocyte-specific Exoc5 KO mice. Based on these data, we propose that exocyst-based mechanisms regulate Neph1 and Nephrin signaling and trafficking, and thus podocyte development and function.


Assuntos
Deleção de Genes , Glomérulos Renais/patologia , Síndrome Nefrótica/patologia , Podócitos/patologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Apoptose , Movimento Celular , Exocitose , Humanos , Glomérulos Renais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome Nefrótica/genética , Fosforilação , Podócitos/metabolismo , Transporte Proteico , Proteinúria/etiologia , Proteinúria/patologia , Transdução de Sinais
5.
J Biol Chem ; 294(11): 3957-3973, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30647131

RESUMO

Centrins (CETN1-4) are ubiquitous and conserved EF-hand-family Ca2+-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors. Here, to explore centrin redundancy, we generated Cetn3GT/GT single-knockout and Cetn2-/-;Cetn3GT/GT double-knockout mice. Whereas the Cetn3 deletion alone did not affect photoreceptor function, simultaneous ablation of Cetn2 and Cetn3 resulted in attenuated scotopic and photopic electroretinography (ERG) responses in mice at 3 months of age, with nearly complete retina degeneration at 1 year. Removal of CETN2 and CETN3 activity from the lumen of the connecting cilium (CC) destabilized the photoreceptor axoneme and reduced the CC length as early as postnatal day 22 (P22). In Cetn2-/-;Cetn3GT/GT double-knockout mice, spermatogenesis-associated 7 (SPATA7), a key organizer of the photoreceptor-specific distal CC, was depleted gradually, and CETN1 was condensed to the mid-segment of the CC. Ultrastructural analysis revealed that in this double knockout, the axoneme of the CC expanded radially at the distal end, with vertically misaligned outer segment discs and membrane whorls. These observations suggest that CETN2 and CETN3 cooperate in stabilizing the CC/axoneme structure.


Assuntos
Axonema/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cílios/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Biol Chem ; 294(50): 19119-19136, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31694913

RESUMO

Mutations in the centrosomal protein 290 (CEP290) gene cause various ciliopathies involving retinal degeneration. CEP290 proteins localize to the ciliary transition zone and are thought to act as a gatekeeper that controls ciliary protein trafficking. However, precise roles of CEP290 in photoreceptors and pathomechanisms of retinal degeneration in CEP290-associated ciliopathies are not sufficiently understood. Using conditional Cep290 mutant mice, in which the C-terminal myosin-tail homology domain of CEP290 is disrupted after the connecting cilium is assembled, we show that this domain is essential for protein confinement between the inner and the outer segments. Upon disruption of the myosin-tail homology domain, inner segment plasma membrane proteins, including syntaxin 3 (STX3), synaptosome-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2), rapidly accumulated in the outer segment. In contrast, localization of endomembrane proteins was not altered. Trafficking and confinement of most outer segment-resident proteins appeared to be unaffected or only minimally affected in Cep290 mutant mice. One notable exception was rhodopsin (RHO), which severely mislocalized to inner segments during the initial stage of degeneration. Similar mislocalization phenotypes were observed in Cep290rd16 mice. These results suggest that a failure of protein confinement at the connecting cilium and consequent accumulation of inner segment membrane proteins in the outer segment, along with insufficient RHO delivery, is part of the disease mechanisms that cause retinal degeneration in CEP290-associated ciliopathies. Our study provides insights into the pathomechanisms of retinal degenerations associated with compromised ciliary gates.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosinas/metabolismo , Células Fotorreceptoras/metabolismo , Proteoglicanas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação
7.
Biol Chem ; 401(5): 573-584, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-31811799

RESUMO

Photoreceptors are polarized neurons, with specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment (OS) where vision begins, an inner segment (IS) where protein synthesis occurs and a synaptic terminal for signal transmission to second-order neurons. The OS is a large, modified primary cilium attached to the IS by a slender connecting cilium (CC), the equivalent of the transition zone (TZ). Daily renewal of ~10% of the OS requires massive protein biosynthesis in the IS with reliable transport and targeting pathways. Transport of lipidated ('sticky') proteins depends on solubilization factors, phosphodiesterase δ (PDEδ) and uncoordinated protein-119 (UNC119), and the cargo dispensation factor (CDF), Arf-like protein 3-guanosine triphosphate (ARL3-GTP). As PDE6 and transducin still reside prominently in the OS of PDEδ and UNC119 germline knockout mice, respectively, we propose the existence of an alternate trafficking pathway, whereby lipidated proteins migrate in rhodopsin-containing vesicles of the secretory pathway.


Assuntos
Metabolismo dos Lipídeos , Células Fotorreceptoras/metabolismo , Animais , Difusão , Humanos , Transporte Proteico
8.
Adv Exp Med Biol ; 1185: 495-499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884660

RESUMO

Peripherin 2 (also known as RDS/Prph2) is localized to the rims of rod and cone outer segment (OS) discs. The C-terminus of Prph2 is a critical functional domain, but its exact role is still unknown. In this mini review, we describe work on the Prph2 C-terminus, highlighting its role as a regulator of protein trafficking, membrane curvature, ectosome secretion, and membrane fusion. Evidence supports a role for the Prph2 C-terminus in these processes and demonstrates that it is necessary for the initiation of OS morphogenesis.


Assuntos
Periferinas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Segmento Externo da Célula Bastonete/fisiologia , Humanos , Morfogênese , Transporte Proteico , Retina/crescimento & desenvolvimento
9.
Curr Top Dev Biol ; 155: 165-225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38043951

RESUMO

Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.


Assuntos
Cílios , Doenças Retinianas , Humanos , Cílios/metabolismo , Transporte Proteico , Doenças Retinianas/metabolismo , Transdução de Sinais , Lipídeos
10.
Dev Cell ; 53(3): 287-299.e5, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275885

RESUMO

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. However, the pathogenesis and molecular mechanisms underlying ROP remain elusive. Herein, using the oxygen-induced retinopathy (OIR) mouse model of ROP, we demonstrate that disassembly of photoreceptor connecting cilia is an early event in response to oxygen changes. Histone deacetylase 6 (HDAC6) is upregulated in the retina of OIR mice and accumulates in the transition zone of connecting cilia. We also show that in response to oxygen changes, apoptosis signal-regulating kinase 1 (ASK1) is activated and phosphorylates HDAC6, blocking its ubiquitination by von Hippel-Lindau and subsequent degradation by the proteasome. Moreover, depletion of HDAC6 or inhibition of the ASK1/HDAC6 axis protects mice from oxygen-change-induced pathological changes of photoreceptors. These findings reveal a critical role for ASK1/HDAC6-mediated connecting cilium disassembly in the OIR mouse model of ROP and suggest a potential value of ASK1/HDAC6-targeted agents for prevention of this disease.


Assuntos
Cílios/patologia , Desacetilase 6 de Histona/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/metabolismo , Cílio Conector dos Fotorreceptores/patologia , Proteólise , Retinopatia da Prematuridade/patologia , Ubiquitinação , Animais , Cílios/metabolismo , Feminino , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , MAP Quinase Quinase Quinase 5/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/toxicidade , Fosforilação , Cílio Conector dos Fotorreceptores/metabolismo , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/metabolismo
11.
Prog Mol Biol Transl Sci ; 132: 39-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26055054

RESUMO

Rhodopsin is a seven-transmembrane G protein-coupled receptor (GPCR) and is the main component of the photoreceptor outer segment (OS), a ciliary compartment essential for vision. Because the OSs are incapable of protein synthesis, rhodopsin must first be synthesized in the inner segments (ISs) and subsequently trafficked across the connecting cilia to the OSs where it participates in the phototransduction cascade. Rapid turnover of the OS necessitates a high rate of synthesis and efficient trafficking of rhodopsin to the cilia. This cilia-targeting mechanism is shared among other ciliary-localized GPCRs. In this review, we will discuss the process of rhodopsin trafficking from the IS to the OS beginning with the trafficking signals present on the protein. Starting from the endoplasmic reticulum and the Golgi apparatus within the IS, we will cover the molecular components assisting the biogenesis and the proper sorting. We will also review the confirmed binding and interacting partners that help target rhodopsin toward the connecting cilium as well as the cilia-localized components which direct proteins into the proper compartments of the OS. While rhodopsin is the most critical and abundant component of the photoreceptor OS, mutations in the rhodopsin gene commonly lead to its mislocalization within the photoreceptors. In addition to covering the trafficking patterns of rhodopsin, we will also review some of the most common rhodopsin mutants which cause mistrafficking and subsequent death of photoreceptors. Toward the goal of understanding the pathogenesis, three major mechanisms of aberrant trafficking as well as putative mechanisms of photoreceptor degeneration will be discussed.


Assuntos
Transporte Proteico , Rodopsina/metabolismo , Transdução de Sinais , Animais , Arrestinas/metabolismo , Transporte Biológico , Cílios/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transdução de Sinal Luminoso , Camundongos , Mutação , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Degeneração Retiniana/metabolismo , Segmento Externo da Célula Bastonete/metabolismo
12.
Cells ; 4(3): 500-19, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378583

RESUMO

Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.

13.
Acta Histochem ; 115(8): 789-94, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23608602

RESUMO

The primary cilia are considered as "cellular antennae" that sense and interchange information with the extracellular environment. Nearly all mammalian cells have a single primary cilium. In the retina, the outer segment of the photoreceptor is known to be a specialized form of primary cilium, but studies on cilia in other layers of the retina are scarce. In this study, we investigated the expression of primary cilia in the whole thickness of the mouse retina using immunofluorescence with three different ciliary markers: Arl13b, acetylated α-tubulin and adenylyl cyclase III. Our results show positive reactions in the photoreceptor layer, outer plexiform layer and ganglion cell layer, which might suggest the possible presence of primary cilia in these areas, but we could not directly prove the strand-like shape of cilia in those areas. In the outer plexiform layer, all three markers showed intense staining along the neuronal synapses, which suggests that the neuronal processes themselves might share the features of cilia.


Assuntos
Cílios/metabolismo , Retina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA