Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Chemistry ; 30(22): e202400560, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363220

RESUMO

Methylation reactions are chemically simple but challenging to perform under mild and non-toxic conditions. A photochemical energy transfer strategy was merged with copper catalysis to enable fast reaction times of minutes and broad applicability to N-heterocycles, (hetero-)aromatic carboxylic acids, and drug-like molecules in high yields and good functional group tolerance. Detailed mechanistic investigations, using kinetic analysis, aprotic MS, UV/Vis, and luminescence quenching experiments revealed a triplet-triplet energy transfer mechanism between hypervalent iodine(III) reagents and readily available photosensitizers.

2.
Chemistry ; : e202402298, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049711

RESUMO

The Cu-catalyzed Ullmann-Goldberg cross-coupling between aryl iodides and oxamates is shown to afford the corresponding N-aryloxamates with yields ranging from moderate to excellent, when the oxamate precursor incorporates a bulky tertiary alkyl group effectively preventing product degradation under the strongly basic reaction conditions. The final oxamic acids are then generated through the acid hydrolysis of the oxamate in high yields. These acids were then converted into urethanes using PIDA under thermal conditions or a visible-light Fe-LMCT process. While electron-deficient N-aryl oxamic acids provide urethanes with high efficiencies, electron-rich counterparts led to diminished yields due to aryl group over-oxidation induced by PIDA.

3.
Chemistry ; : e202402085, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926940

RESUMO

We described a copper(I)-catalyzed atom economic and selective hydroamination-cyclization of alkynyl-tethered quinazolinones to prepare a variety of indole-fused pyrazino[1,2-a]quinazolinones in good to excellent yields ranging from 39 %-99 % under mild reaction conditions. Control experiments revealed that coordination-directed method of quinazolinone moiety with copper(I) was important for the selective hydroamination-cyclization of alkynes at the N1-atom instead of N3-atom of quinazolinone. The reaction could be easily performed at gram scales and some prepared indole-fused pyrazino[1,2-a]quinazolinones with donating groups on the indole moiety showed a distinct fluorescence emission wavelength with blue shift under the acid conditions.

4.
Chemistry ; 30(8): e202303362, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38095511

RESUMO

Herein, we report the Cu-complex catalyzed, native functional group-assisted, and TFA/NMF additives promoted (phenylsulfonyl)difluoromethylation of vinylic C(sp2 )-H bond of acrylamides. Using our in-home designed reagent, this reaction enables the construction of the C(sp2 )-CF2 SO2 Ph bond from simple C-H bond activation by copper catalysis under mild reaction conditions with total Z-selectivity. The versatility of utilized fluorinated group was illustrated by its conversion into value-added CF2 moieties as well as the remarkable =CHF residue. The performed experimental and computational mechanistic studies enabled to identify the true nature of active catalyst and substrate, as well as establish critical roles of TFA and NMF additives. In this reaction, the TFA acts as a promoter of the much-needed CuII /CuII →CuIII /CuI disproportionation, while the NMF facilitates the following ligand exchange and C-C coupling processes. We ruled out the generation of radical intermediates and established the C-H activation to be irreversible and the rate-determining step of the entire process.

5.
Chemistry ; 30(44): e202401062, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38821866

RESUMO

A copper-catalyzed [3+2] annulation reaction of exocyclic enamines/enol ethers with 1,4-benzoquinone esters has been developed, providing facile access to N,O-spiroketals and spiroketals under mild conditions with broad substrate scope (26 examples, 71-94 % yields). Gram scale synthesis and chemical transformations demonstrated that this method is potentially useful in the synthesis of natural products and drugs containing a N,O- spiroketal moiety. The chiral N,O-spiroketal could be obtained with 98 % ee after recrystallization, when a chiral SaBOX ligand was employed.

6.
Chemistry ; : e202403023, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171785

RESUMO

Anilines are ubiquitous in bio-active compounds and their synthesis can be achieved via metal-catalyzed cross-coupling reactions involving aryl halides. We describe an unusual, yet simple, CuII-catalyzed system for the amination of aryl chlorides in pure aqueous ammonia with 2.5 mol% catalyst loading under non-inert conditions. Different from previous systems, the reaction proceeds even without an additional organic solvent. Copper(II) sulfate in combination with 4,7-dimethoxy-1,10-phenanthroline enabled the amination of several aryl chlorides containing electron-neutral, -donating and -withdrawing groups to the corresponding anilines with good to excellent yields. The upscaling potential of the procedure has been shown by the synthesis at 50 mmol scale. The reaction proceeds as one of the rare cases of a CuII-assisted coupling, in contrast to the typical CuI-CuIII intermediates postulated for most Ullmann-type coupling reactions. The copper(II) center allows for a nucleophilic substitution pathway, enabled by the deprotonation of coordinated ammonia.

7.
Angew Chem Int Ed Engl ; : e202412508, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213133

RESUMO

The isolation and catalytic enantioselective synthesis of configurationally stable S-stereogenic sulfonium ylides has been a significant challenge in the field of asymmetric synthesis. These reactive intermediates are crucial for a variety of synthetic transformations, yet their inherent tendency towards rapid inversion at the sulfur stereocenter has hindered their practical utilization. Conventional approaches have focused on strategies that incorporate a C=S bond-containing cyclic framework to help mitigate this stereochemical lability. In this work, we present an alternative tactic that leverages the stabilizing influence of an adjacent N-atom and cyclic sulfide moiety. Exploiting a copper catalyzed enantioselective intermolecular carbene transfer reaction, structurally diverse S-stereogenic aminosulfonium ylides have been achieved in excellent yields and enantioselectivities. Experimental results indicate that the careful selection of 2-diazo-1,3-diketone precursors is crucial for achieving optimal stereoinduction in this transformation. The resulting highly enantioenriched aminosulfonium ylides allow for further stereospecific elaborations to furnish aminosulfonium ylide oxides and sulfinamide. This work expands the boundaries of chiral sulfonium ylide chemistry, providing access to a broad range of previously elusive S-stereogenic aminosulfonium ylide scaffolds.

8.
Angew Chem Int Ed Engl ; : e202407391, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023320

RESUMO

Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98% ee, > 25:1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.

9.
Angew Chem Int Ed Engl ; : e202411156, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136344

RESUMO

A reagent-controlled diastereodivergent copper-catalyzed borylative difunctionalization is reported. The formation of Lewis adducts that guide selectivity is commonly invoked in organic reaction mechanisms. Using density functional theory calculations, we identified BpinBdan as a sterically similar and less Lewis acidic alternative to B-2pin2. Using a newly developed borylative aldol domino reaction as the proof-of-concept, we demonstrate a change in stereochemical outcome by a simple change of borylating reagent - B2pin2 affords the diastereomer associated with coordination control while BpinBdan overturns this mode of binding. We show that this strategy can be generalized to other scaffolds and, more importantly, that BpinBdan does not alter the diastereomeric outcome of the reaction when coordination is not involved. BpinBdan can be viewed as a mechanistic probe for coordination in future copper-catalyzed borylation reactions.

10.
Angew Chem Int Ed Engl ; 63(1): e202315293, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955332

RESUMO

Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric ß-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.

11.
Angew Chem Int Ed Engl ; 63(7): e202317973, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38179840

RESUMO

A Cu-catalyzed asymmetric synthesis of silicon-stereogenic benzoxasiloles has been realized via intramolecular Si-O coupling of [2-(hydroxymethyl)phenyl]silanes. Cu(I)/difluorphos is found to be an efficient catalytic system for enantioselective Si-C bond cleavage and Si-O bond formation. In addition, kinetic resolution of racemic substituted [2-(hydroxymethyl)phenyl]silanes using Cu(I)/ PyrOx (pyridine-oxazoline ligands) as the catalytic system is developed to afford carbon- and silicon-stereogenic benzoxasiloles. Ring-opening reactions of chiral benzoxasiloles with organolithiums and Grignard reagents yield various enantioenriched functionalized tetraorganosilanes.

12.
Angew Chem Int Ed Engl ; : e202411469, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073195

RESUMO

Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids. The reactions proceed under practical conditions in the absence or presence of visible-light irradiation, affording chiral 1,1-diarylalkanes, benzylic alkynes and allenes with good enantioselectivities. Mechanistic studies imply that the copper/Box complexes play a dual role in both radical generation and ensuing asymmetric cross-coupling. In the cases of 1,3-enynes, visible-light irradiation could improve the activity of copper/Box complex toward the initial radical generation, enabling better efficiency match between radical formation and cross-coupling.

13.
Angew Chem Int Ed Engl ; : e202410833, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923633

RESUMO

We herein describe the first example of ligand-controlled, copper-catalyzed regiodivergent asymmetric difunctionalization of terminal alkynes through a cascade hydroboration and hydroallylation process. The catalytic system, consisting of (R)-DTBM-Segphos and CuBr, could efficiently achieve asymmetric 1,1-difunctionalization of aryl terminal alkynes, while ligand switching to (S,S)-Ph-BPE could result in asymmetric 1,2-difunctionalization exclusively. In addition, alkyl substituted terminal alkynes, especially industrially relevant acetylene and propyne, were also valid feedstocks for asymmetric 1,1-difunctionalization. This protocol is characterized by good functional group tolerance, a broad scope of substrates (>150 examples), and mild reaction conditions. We also showcase the value of this method in the late-stage functionalization of complicated bioactive molecules and simplifying the synthetic routes toward the key intermediacy of natural product (bruguierol A). Mechanistic studies combined with DFT calculations provide insight into the mechanism and origins of this ligand-controlled regio- and stereoselectivity.

14.
Angew Chem Int Ed Engl ; 63(11): e202319850, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38273811

RESUMO

In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.

15.
Angew Chem Int Ed Engl ; 63(37): e202408158, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38923731

RESUMO

Polysulfides are significant compounds in life science, pharmaceutical science, and materials science. Therefore, polysulfide construction is in great demand. The controllable sequential installation of groups on both ends of a S-S motif faces an enormous challenge owing to the reversible nature of the covalent S-S bond. A library was established with two divergent mask groups for bilateral unsymmetrical disulfurating reagents (R1O-SS-SO2R2). Sequential coupling with preferential activation of the S-SO2 bond (37.6 kcal/mol) and controllable activation of the S-O bond (54.8 kcal/mol) in the presence of the S-S bond (62.0 kcal/mol) enabled successive reactions at each end of the S-S motif to afford unsymmetrical disulfides and trisulfides, even for the cross-linkage of natural products, pharmaceuticals, peptides, and a protein (bovine serum albumin).

16.
Angew Chem Int Ed Engl ; 63(3): e202317132, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38038249

RESUMO

While the hydrogen atom abstraction (HAA) from C(sp3 )-H bond has been well explored, the radical-mediated chemo- and regio-selective functionalization of allenic C(sp2 )-H bond via direct HAA from C(sp2 )-H bond of allene remains an unsolved challenge in synthetic chemistry. This is primarily due to inherent challenges with addition of radical intermediates to allenes, regioselectivity of HAA process, instability of allenyl radical toward propargyl radical et al. Herein, we report a copper catalyzed allenic C(sp2 )-H cyanation of an array of tri- and di-substituted allenes with exceptional site-selectivity, while mono-substituted allene was successfully cyanated, albeit with a low yield. In the developed strategy, steric N-fluoro-N-alkylsulfonamide, serving as precursor of hydrogen atom abstractor, plays a crucial role in achieving the desired regioselectivity and avoiding addition of N-centered radical to allene.

17.
Angew Chem Int Ed Engl ; : e202411232, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056890

RESUMO

Cu-catalyzed asymmetric allylic borylation of 3,3'-disubstituted 1-vinylcyclobutan-1-ols renders axially chiral allylborane systems, with high asymmetric induction for both enantiomers, by precise selection of the cis or trans substrate. The enantioenriched alkylidenecyclobutanes served as chiral platform to prove the conceptually challenging transference of the axial-to-point chirality through two new stereocenters and one pseudoasymmetric carbon generated via diastereoconvergent allylation of aldehydes, without enantioselective erosion.

18.
Angew Chem Int Ed Engl ; 63(32): e202405560, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787342

RESUMO

Radical-involved multicomponent difunctionalization of 1,3-dienes has recently emerged as a promising strategy for rapid synthesis of valuable allylic compounds in one-pot operation. However, the expansion of radical scope and enantiocontrol remain two major challenges. Herein, we describe an unprecedented photoinduced copper-catalyzed highly enantioselective three-component radical 1,2-azidooxygenation of 1,3-dienes with readily available azidobenziodazolone reagent and carboxylic acids. This mild protocol exhibits a broad substrate scope, high functional group tolerance, and exceptional control over chemo-, regio- and enantioselectivity, providing practical access to diverse valuable azidated chiral allylic esters. Mechanistic studies imply that the chiral copper complex is implicated as a bifunctional catalyst in both the photoredox catalyzed azidyl radical generation and enantioselective radical C-O cross-coupling.

19.
Angew Chem Int Ed Engl ; 63(36): e202405876, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39031750

RESUMO

Strategic design for the construction of contiguous tetrasubstituted carbon centers represents a daunting challenge in synthetic organic chemistry. Herein, we report a combined experimental and computational investigation aimed at developing catalytic aerobic carbooxygenation, involving the intramolecular addition of tertiary radicals to geminally disubstituted alkenes, followed by aerobic oxygenation. This reaction provides a straightforward route to various α,α,ß,ß-tetrasubstituted γ-lactones, which can be readily transformed into hexasubstituted γ-lactones through allylation/translactonization. Computational analysis reveals that the key mechanistic foundation for achieving the developed aerobic carbooxygenation involves the design of endothermic (energetically uphill) C-C bond formation followed by exothermic (energetically downhill) oxygenation. Furthermore, we highlight a unique fluorine-induced stereoelectronic effect that stabilizes the endothermic stereodetermining transition state.

20.
Angew Chem Int Ed Engl ; 63(26): e202405385, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38634294

RESUMO

C(sp2)-H functionalization offers an efficient strategy for the synthesis of various elaborated N-containing heteroarenes. Along these lines, oxazino pyridines that can be readily prepared from pyridines, have been introduced as powerful substrates in radical- and ionic-mediated meta-C-H functionalization. However, the regioselective meta-C-H arylation of pyridines remains a great challenge. Herein, a copper-catalyzed meta-selective C-H arylation of pyridines and isoquinolines through bench-stable dearomatized intermediates is reported. Electrophilic aryl-Cu(III) species, generated from readily accessible aryl I(III) reagents, enable the efficient meta-arylation of a broad range of pyridines and isoquinolines. The method also allows the meta-selective alkenylation of these heteroarenes using the corresponding alkenyl I(III)-reagents. Late-stage arylation of drug-derived pyridines and larger-scale experiments demonstrate the potential of this synthetic methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA