Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(22): 4233-4248.e27, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36306736

RESUMO

The human genome contains hundreds of thousands of regions harboring copy-number variants (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We developed a computational approach leveraging haplotype sharing in biobank cohorts to more sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half of all rare gene inactivation events produced by genomic structural variation. This CNV call set enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (p < 5 × 10-8) likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling insights into dosage sensitivity of these genes and uncovering several gene-trait relationships. These results demonstrate the ability of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Variações do Número de Cópias de DNA , Fenótipo , Genoma Humano , Polimorfismo de Nucleotídeo Único/genética
2.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34793701

RESUMO

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Assuntos
Deleção de Genes , Duplicação Gênica , Células Germinativas/metabolismo , Recombinação Genética/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Cromátides/metabolismo , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , DNA Circular/genética , Feminino , Genoma , Haplótipos/genética , Recombinação Homóloga/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutagênese Insercional/genética , Mutação/genética
3.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474920

RESUMO

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Adolescente , Adulto , Idade de Início , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Evolução Molecular , Feminino , Deleção de Genes , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Estabilidade Proteica , Convulsões/diagnóstico por imagem
4.
Am J Hum Genet ; 110(1): 71-91, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493769

RESUMO

Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.


Assuntos
Fenda Labial , Fissura Palatina , Variações do Número de Cópias de DNA , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/genética , Fenótipo , Fatores de Transcrição/genética
5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38340093

RESUMO

Shotgun sequencing is a high-throughput method used to detect copy number variants (CNVs). Although there are numerous CNV detection tools based on shotgun sequencing, their quality varies significantly, leading to performance discrepancies. Therefore, we conducted a comprehensive analysis of next-generation sequencing-based CNV detection tools over the past decade. Our findings revealed that the majority of mainstream tools employ similar detection rationale: calculates the so-called read depth signal from aligned sequencing reads and then segments the signal by utilizing either circular binary segmentation (CBS) or hidden Markov model (HMM). Hence, we compared the performance of those two core segmentation algorithms in CNV detection, considering varying sequencing depths, segment lengths and complex types of CNVs. To ensure a fair comparison, we designed a parametrical model using mainstream statistical distributions, which allows for pre-excluding bias correction such as guanine-cytosine (GC) content during the preprocessing step. The results indicate the following key points: (1) Under ideal conditions, CBS demonstrates high precision, while HMM exhibits a high recall rate. (2) For practical conditions, HMM is advantageous at lower sequencing depths, while CBS is more competitive in detecting small variant segments compared to HMM. (3) In case involving complex CNVs resembling real sequencing, HMM demonstrates more robustness compared with CBS. (4) When facing large-scale sequencing data, HMM costs less time compared with the CBS, while their memory usage is approximately equal. This can provide an important guidance and reference for researchers to develop new tools for CNV detection.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Am J Hum Genet ; 109(8): 1353-1365, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931048

RESUMO

Copy-number variants and structural variants (CNVs/SVs) drive many neurodevelopmental-related disorders. While many neurodevelopmental-related CNVs/SVs give rise to complex phenotypes, the overlap in phenotypic presentation between independent CNVs can be extensive and provides a motivation for shared approaches. This confluence at the level of clinical phenotype implies convergence in at least some aspects of the underlying genomic mechanisms. With this perspective, our Commission on Novel Technologies for Neurodevelopmental CNVs asserts that the time has arrived to approach neurodevelopmental-related CNVs/SVs as a class of disorders that can be identified, investigated, and treated on the basis of shared mechanisms and/or pathways (e.g., molecular, neurological, or developmental). To identify common etiologic mechanisms among uncommon neurodevelopmental-related disorders and to potentially identify common therapies, it is paramount for teams of scientists, clinicians, and patients to unite their efforts. We bring forward novel, collaborative, and integrative strategies to translational CNV/SV research that engages diverse stakeholders to help expedite therapeutic outcomes. We articulate a clear vision for piloted roadmap strategies to reduce patient/caregiver burden and redundancies, increase efficiency, avoid siloed data, and accelerate translational discovery across CNV/SV-based syndromes.


Assuntos
Transtornos do Neurodesenvolvimento , Defesa do Paciente , Variações do Número de Cópias de DNA/genética , Genoma , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/terapia , Fenótipo
7.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35224620

RESUMO

CoverageMaster (CoM) is a copy number variation (CNV) calling algorithm based on depth-of-coverage maps designed to detect CNVs of any size in exome [whole exome sequencing (WES)] and genome [whole genome sequencing (WGS)] data. The core of the algorithm is the compression of sequencing coverage data in a multiscale Wavelet space and the analysis through an iterative Hidden Markov Model. CoM processes WES and WGS data at nucleotide scale resolution and accurately detects and visualizes full size range CNVs, including single or partial exon deletions and duplications. The results obtained with this approach support the possibility for coverage-based CNV callers to replace probe-based methods such as array comparative genomic hybridization and multiplex ligation-dependent probe amplification in the near future.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Hibridização Genômica Comparativa/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
8.
Clin Genet ; 105(2): 173-184, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899624

RESUMO

Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.


Assuntos
Deficiência Intelectual , Humanos , Feminino , Deficiência Intelectual/genética , Genes Ligados ao Cromossomo X/genética , Duplicação Gênica , Inativação do Cromossomo X/genética , Mutação
9.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924610

RESUMO

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

10.
Am J Med Genet A ; 194(3): e63457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37881147

RESUMO

Recurrent 1q21.1 copy number variants (CNVs) have been associated with a wide spectrum of clinical features, ranging from normal phenotype to moderate intellectual disability, with congenital anomalies and dysmorphic features. They are often inherited from unaffected parents and the pathogenicity is difficult to assess. We describe the phenotypic and genotypic data for 34 probands carrying CNVs in the 1q21.1 chromosome region (24 duplications, 8 deletions and 2 triplications). We also reviewed 89 duplications, 114 deletions and 5 triplications described in the literature, at variable 1q21.1 locations. We aimed to identify the most highly associated clinical features to determine the phenotypic expression in affected individuals. Developmental delay or learning disabilities and neuropsychiatric disorders were common in patients with deletions, duplications and triplications of 1q21.1. Mild dysmorphic features common in these CNVs include a prominent forehead, widely spaced eyes and a broad nose. The CNVs were mostly inherited from apparently unaffected parents. Almost half of the CNVs were distal, overlapping with a common minimal region of 1.2 Mb. We delineated the clinical implications of 1q21.1 CNVs and confirmed that these CNVs are likely pathogenic, although subject to incomplete penetrance and variable expressivity. Long-term follow-up should be performed to each newly diagnosed case, and prenatal genetic counseling cautiously discussed, as it remains difficult to predict the phenotype in the event of an antenatal diagnosis.


Assuntos
Variações do Número de Cópias de DNA , Deficiência Intelectual , Humanos , Feminino , Gravidez , Variações do Número de Cópias de DNA/genética , Fenótipo , Genótipo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Diagnóstico Pré-Natal
11.
BJOG ; 131(2): 157-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37264725

RESUMO

OBJECTIVE: To examine the association of placental and fetal DNA copy number variants (CNVs) with fetal structural malformations (FSMs) in stillborn fetuses. DESIGN: A secondary analysis of stillbirth cases in the Stillbirth Collaborative Research Network (SCRN) study. SETTING: Multicenter, 59 hospitals in five geographic regions in the USA. POPULATION: 388 stillbirth cases of the SCRN study (2006-2008). METHODS: Fetal structural malformations were grouped by anatomic system and specific malformation type (e.g. central nervous system, thoracic, cardiac, gastrointestinal, skeletal, umbilical cord and craniofacial defects). Single-nucleotide polymorphism array detected CNVs of at least 500 kb. CNVs were classified into two groups: normal, defined as no CNVs >500 kb or benign CNVs, and abnormal, defined as pathogenic or variants of unknown clinical significance. MAIN OUTCOME MEASURES: The proportions of abnormal CNVs and normal CNVs were compared between stillbirth cases with and without FSMs using the Wald Chi-square test. RESULTS: The proportion of stillbirth cases with any FSMs was higher among those with abnormal CNVs than among those with normal CNVs (47.5 versus 19.1%; P-value <0.001). The most common organ system-specific FSMs associated with abnormal CNVs were cardiac defects, followed by hydrops, craniofacial defects and skeletal defects. A pathogenic deletion of 1q21.1 involving 46 genes (e.g. CHD1L) and a duplication of 21q22.13 involving four genes (SIM2, CLDN14, CHAF1B, HLCS) were associated with a skeletal and cardiac defect, respectively. CONCLUSION: Specific CNVs involving several genes were associated with FSMs in stillborn fetuses. The findings warrant further investigation and may inform counselling and care surrounding pregnancies affected by FSMs at risk for stillbirth.


Assuntos
Variações do Número de Cópias de DNA , Natimorto , Gravidez , Feminino , Humanos , Natimorto/epidemiologia , Natimorto/genética , Variações do Número de Cópias de DNA/genética , Aberrações Cromossômicas , Placenta , Feto/anormalidades , Diagnóstico Pré-Natal , Fator 1 de Modelagem da Cromatina/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética
12.
Adv Exp Med Biol ; 1441: 937-945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884762

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Humanos , Predisposição Genética para Doença/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Fenótipo
13.
J Perinat Med ; 52(2): 171-180, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081620

RESUMO

OBJECTIVES: To investigate the incidence of pathogenic recurrent CNVs in fetuses with different referral indications and review the intrauterine phenotypic features of each CNV. METHODS: A total of 7,078 amniotic fluid samples were collected for chromosome microarray analysis (CMA) and cases carrying pathogenic recurrent CNVs were further studied. RESULTS: The highest incidence of pathogenic recurrent CNVs was 2.25 % in fetal ultrasound anomalies (FUA) group. Moreover, regardless of other indications, pregnant women with advanced maternal age have a lower incidence compared with whom less than 35 years old (p<0.05). In total 1.17 % (83/7,078) samples carried pathogenic recurrent CNVs: 20 cases with 22q11.2 recurrent region (12 microdeletion and eight microduplication), 11 with 1q21.1 (five microdeletion and six microduplication) and 16p13.11 (four microdeletion and seven microduplication), 10 with 15q11.2 recurrent microdeletion, seven with Xp22.31 recurrent microdeletion and 16p11.2 (three microdeletion and four microduplication), four with 7q11.23 (two microdeletion and two microduplication), three with 17p11.2 (three microdeletion), 17p12 (two microdeletion and one microduplication) and 17q12 (two microdeletion and one microduplication). The rest ones were rare in this study. CONCLUSIONS: Pathogenic recurrent CNVs are more likely to be identified in FUA group. Pregnant women with advanced maternal age have a lower incidence of pathogenic recurrent CNVs. The profile of pathogenic recurrent CNVs between prenatal and postnatal is different, especially in 22q11.2, 1q21.1, 15q13.3 recurrent region and 15q11.2 deletion.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Deficiência Intelectual , Gravidez , Humanos , Feminino , Adulto , Análise em Microsséries , Cromossomos Humanos Par 15 , Diagnóstico Pré-Natal
14.
J Korean Med Sci ; 39(8): e70, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442716

RESUMO

BACKGROUND: Ultrasonographic soft markers are normal variants, rather than fetal abnormalities, and guidelines recommend a detailed survey of fetal anatomy to determine the necessity of antenatal karyotyping. Anecdotal reports have described cases with ultrasonographic soft markers in which chromosomal microarray analysis (CMA) revealed pathogenic copy number variants (CNVs) despite normal results on conventional karyotyping, but CMA for ultrasonographic soft markers remains a matter of debate. In this systematic review, we evaluated the clinical significance of CMA for pregnancies with isolated ultrasonographic soft markers and a normal fetal karyotype. METHODS: An electronic search was conducted by an experienced librarian through the MEDLINE, Embase, and Cochrane CENTRAL databases. We reviewed 3,338 articles (3,325 identified by database searching and 13 by a hand search) about isolated ultrasonographic soft markers, and seven ultrasonographic markers (choroid plexus cysts, echogenic bowel, echogenic intracardiac focus, hypoplastic nasal bone, short femur [SF], single umbilical artery, and urinary tract dilatation) were included for this study. RESULTS: Seven eligible articles were included in the final review. Pathogenic or likely pathogenic CNVs were found in fetuses with isolated ultrasonographic soft markers and a normal karyotype. The overall prevalence of pathogenic or likely pathogenic CNVs was 2.0% (41 of 2,048). The diagnostic yield of CMA was highest in fetuses with isolated SF (9 of 225, 3.9%). CONCLUSION: CMA could aid in risk assessment and pregnancy counseling in pregnancies where the fetus has isolated ultrasonographic soft markers along with a normal karyotype.


Assuntos
Feto , Análise em Microsséries , Ultrassonografia Pré-Natal , Feminino , Humanos , Gravidez , Feto/diagnóstico por imagem , Cariotipagem
15.
J Intellect Disabil Res ; 68(8): 969-984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657658

RESUMO

BACKGROUND: Despite the established knowledge that recurrent copy number variants (CNVs) at the 16p11.2 locus BP4-BP5 confer risk for behavioural and language difficulties, limited research has been conducted on the association between behavioural and social-communicative profiles. The current study aims to further delineate the prevalence, nature and severity of, and the association between, behavioural and social-communicative features of school-aged children with 16p11.2 deletion syndrome (16p11.2DS) and 16p11.2 duplication (16p11.2Dup). METHODS: A total of 68 individuals (n = 47 16p11.2DS and n = 21 16p11.2Dup) aged 6-17 years participated. Standardised intelligence tests were administered, and behavioural and social-communicative skills were assessed by standardised questionnaires. Scores of both groups were compared with population norms and across CNVs. The influence of confounding factors was investigated, and correlation analyses were performed. RESULTS: Compared with the normative sample, children with 16p11.2DS showed high rates of social responsiveness (67%) and communicative problems (69%), while approximately half (52%) of the patients displayed behavioural problems. Children with 16p11.2Dup demonstrated even higher rates of social-communicative problems (80-90%) with statistically significantly more externalising and overall behavioural challenges (89%). In both CNV groups, there was a strong positive correlation between behavioural and social-communicative skills. CONCLUSIONS: School-aged children with 16p11.2 CNVs show high rates of behavioural, social responsiveness and communicative problems compared with the normative sample. These findings point to the high prevalence of autistic traits and diagnoses in these CNV populations. Moreover, there is a high comorbidity between behavioural and social-communicative problems. Patients with difficulties in both domains are vulnerable and need closer clinical follow-up and care.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 16 , Deficiência Intelectual , Humanos , Criança , Masculino , Feminino , Adolescente , Cromossomos Humanos Par 16/genética , Deficiência Intelectual/genética , Variações do Número de Cópias de DNA , Habilidades Sociais , Síndrome de Smith-Magenis/genética , Comportamento Social , Duplicação Cromossômica , Transtorno Autístico , Transtornos Cromossômicos
16.
J Assist Reprod Genet ; 41(3): 739-750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263474

RESUMO

PURPOSE: The preimplantation genetic testing for aneuploidy (PGT-A) platform is not currently available for small copy-number variants (CNVs), especially those < 1 Mb. Through strategies used in PGT for monogenic disease (PGT-M), this study intended to perform PGT for families with small pathogenic CNVs. METHODS: Couples who carried small pathogenic CNVs and underwent PGT at the Reproductive and Genetic Hospital of CITIC-Xiangya (Hunan, China) between November 2019 and April 2023 were included in this study. Haplotype analysis was performed through two platforms (targeted sequencing and whole-genome arrays) to identify the unaffected embryos, which were subjected to transplantation. Prenatal diagnosis using amniotic fluid was performed during 18-20 weeks of pregnancy. RESULTS: PGT was successfully performed for 20 small CNVs (15 microdeletions and 5 microduplications) in 20 families. These CNVs distributed on chromosomes 1, 2, 6, 7, 13, 15, 16, and X with sizes ranging from 57 to 2120 kb. Three haplotyping-based PGT-M strategies were applied. A total of 89 embryos were identified in 25 PGT cycles for the 20 families. The diagnostic yield was 98.9% (88/89). Nineteen transfers were performed for 17 women, resulting in a 78.9% (15/19) clinical pregnancy rate after each transplantation. Of the nine women who had healthy babies, eight accepted prenatal diagnosis and the results showed no related pathogenic CNVs. CONCLUSION: Our results show that the extended haplotyping-based PGT-M strategy application for small pathogenic CNVs compensated for the insufficient resolution of PGT-A. These three PGT-M strategies could be applied to couples with small pathogenic CNVs.


Assuntos
Aborto Espontâneo , Diagnóstico Pré-Implantação , Gravidez , Humanos , Feminino , Diagnóstico Pré-Implantação/métodos , Testes Genéticos/métodos , Taxa de Gravidez , Aborto Espontâneo/genética , Nascido Vivo , Aneuploidia
17.
Arch Gynecol Obstet ; 310(2): 933-942, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814455

RESUMO

OBJECTIVE: To explore the association between the concentration of maternal serum biomarkers and the risk of fetal carrying chromosome copy number variants (CNVs). METHODS: Pregnant women identified as high risk in the second-trimester serological triple screening and underwent traditional amniotic fluid karyotype analysis, along with comparative genomic hybridization array (aCGH)/copy number variation sequencing (CNV-seq), were included in the study. We divided the concentration of serum biomarkers, free beta-human chorionic gonadotropin (fß-hCG), alpha fetoprotein (AFP) and unconjugated estriol (uE3), into three levels: abnormally low, normal and abnormally high. The prevalence of abnormally low, normal and abnormally high serum fß-hCG, AFP and uE3 levels in pregnant women with aberrant aCGH/CNV-seq results and normal controls was calculated. RESULTS: Among the 2877 cases with high risk in the second-trimester serological triple screening, there were 98 chromosome abnormalities revealed by karyotype analysis, while 209 abnormalities were detected by aCGH/CNVseq (P<0.001) . The carrying rate of aberrant CNVs increased significantly when the maternal serum uE3 level was less than 0.4 multiple of median (MoM) of corresponding gestational weeks compared to normal controls, while the carrying rate of aberrant CNVs decreased significantly when the maternal serum fß-hCG level was greater than 2.5 MoM compared to normal controls. No significant difference was found in the AFP group. CONCLUSION: Low serum uE3 level (<0.4 MoM) was associated with an increased risk of aberrant CNVs.


Assuntos
Biomarcadores , Gonadotropina Coriônica Humana Subunidade beta , Variações do Número de Cópias de DNA , alfa-Fetoproteínas , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Adulto , Biomarcadores/sangue , Gonadotropina Coriônica Humana Subunidade beta/sangue , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo , Segundo Trimestre da Gravidez/sangue , Estriol/sangue , Hibridização Genômica Comparativa , Aberrações Cromossômicas , Cariotipagem , Diagnóstico Pré-Natal/métodos , Testes para Triagem do Soro Materno
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473795

RESUMO

Sudden cardiac death due to ventricular fibrillation (VF) during ST-elevation acute myocardial infarction (STEAMI) significantly contributes to cardiovascular-related deaths. Although VF has been linked to genetic factors, variations in copy number variation (CNV), a significant source of genetic variation, have remained largely unexplored in this context. To address this knowledge gap, this study performed whole exome sequencing analysis on a cohort of 39 patients with STEAMI who experienced VF, aiming to elucidate the role of CNVs in this pathology. The analysis revealed CNVs in the form of duplications in the PARP2 and TTC5 genes as well as CNVs in the form of deletions in the MUC15 and PPP6R1 genes, which could potentially serve as risk indicators for VF during STEAMI. The analysis also underscores notable CNVs with an average gene copy number equal to or greater than four in DEFB134, FCGR2C, GREM1, PARM1, SCG5, and UNC79 genes. These findings provide further insight into the role of CNVs in VF in the context of STEAMI.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Fibrilação Ventricular , Humanos , Variações do Número de Cópias de DNA , Fatores de Risco , Morte Súbita Cardíaca , Mucinas/genética , Fatores de Transcrição/genética
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339013

RESUMO

The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.


Assuntos
Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/genética , Mutação , Exoma , Sequenciamento Completo do Genoma , Genômica , Variações do Número de Cópias de DNA
20.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928247

RESUMO

The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.


Assuntos
Testes Genéticos , Doenças Retinianas , Sequenciamento Completo do Genoma , Humanos , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/métodos , Masculino , Feminino , Suíça , Estudos de Coortes , Adulto , Variações do Número de Cópias de DNA , Sequenciamento do Exoma/métodos , Biologia Computacional/métodos , Pessoa de Meia-Idade , Criança , Adolescente , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA