Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6139-6147, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722705

RESUMO

Organic transistors based on organic semiconductors together with quantum dots (QDs) are attracting more and more interest because both materials have excellent optoelectronic properties and solution processability. Electronics based on nontoxic QDs are highly desired considering the potential health risks but are limited by elevated surface defects, inadequate stability, and diminished luminescent efficiency. Herein, organic synaptic transistors based on environmentally friendly ZnSe/ZnS core/shell QDs with passivating surface defects are developed, exhibiting optically programmable and electrically erasable characteristics. The synaptic transistors feature linear multibit storage capability and wavelength-selective memory function with a retention time above 6000 s. Various neuromorphic applications, including memory enhancement, optical communication, and memory consolidation behaviors, are simulated. Utilizing an established neuromorphic model, accuracies of 92% and 91% are achieved in pattern recognition and complicated electrocardiogram signal processing, respectively. This research highlights the potential of environmentally friendly QDs in neuromorphic applications and health monitoring.

2.
Small ; 20(29): e2309284, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38359073

RESUMO

Functionalization of quantum dots (QDs) via ligand exchange is prone to debase their photoluminescence quantum yield (PL QY) owing to the unavoidable surface damage by excess reactants, and even worse in aqueous medium. Herein, the oligomeric zinc thiolate as the multidentate hydrophilic ligand featuring facile synthetic protocol is proposed. A simple reaction between ZnCl2 and 3-mercaptopropionic acid produces oligomeric ligands containing 3-6 zinc thiolate units, where the terminal moieties provide multidentate anchoring to the surface as well as hydrophilicity. 2D proton nuclear Overhauser effect spectroscopy (2D 1H NOESY) and X-ray photoelectron spectroscopy (XPS) reveal that the oligomeric zinc thiolate ligands adsorb on the surface via multidentate metal carboxylate bindings without destruction of molecular structure, regardless of partial dissociation of thiolate branches in aqueous phase. Enhanced binding affinity granted by the multidentate nature allows for the effective exchange of original surface ligands without considerable surface deterioration. The zinc thiolate-capped Cd-free aqueous QDs exhibit a high photoluminescence quantum yield of ≈90% and extended stability against long-term storage and photochemical stress.

3.
Luminescence ; 39(9): e4874, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39252570

RESUMO

The capped CdS-ZnS quantum dots (QDs) were synthesized with various thiol capping agents of glycolic acid (TGA), mercaptosuccinic acid (MSA), and L-cysteine (LCY) and used as fluorescence probe for determination of Cu (II) ions. The method of two-level three-factor full-factorial experiment design was used to achieve the best optical fluorescence emission. Results revealed that Cu (II) ions can effectively quench the emission of QDs, and the fluorescence intensity is linearly decreased with increasing Cu (II) ion concentration. The limit of detection for CdS-ZnS@ QDs capped with TGA, MSA, and LCY was obtained at 1.15 × 10-7, 1.32 × 10-7, and 2.19 × 10-7 mol L-1, respectively, with linear dynamic range of 3.13 × 10-6 to 1.41 × 10-4 mol L-1. Luminescence quantum yields of CdS-ZnS@LCY, CdS-ZnS@MSA, and CdS-ZnS@TGA were obtained at 4.17, 1.92, and 2.47, respectively. Results indicated that no significant quenching occurred in the presence of the other metal ions. The binding constant (Kb) of capped CdS-ZnS@ QDs with Cu2+ and the other metal ions was also investigated and discussed. The Kb value for Cu2+ was obtained considerably more than that the other ions. This work presents a new and sensitive method for determination of Cu2+ ion.


Assuntos
Compostos de Cádmio , Cobre , Corantes Fluorescentes , Pontos Quânticos , Compostos de Sulfidrila , Sulfetos , Propriedades de Superfície , Compostos de Zinco , Pontos Quânticos/química , Cobre/química , Cobre/análise , Sulfetos/química , Compostos de Zinco/química , Compostos de Cádmio/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Espectrometria de Fluorescência , Fluorescência , Íons/química , Íons/análise
4.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474515

RESUMO

In this work, Au nanoparticle-decorated ZnO@graphene core-shell quantum dots (Au-ZnO@graphene QDs) were successfully prepared and firstly used to modify an ITO electrode for the construction of a novel photoelectrochemical biosensor (Au-ZnO@graphene QDs/ITO). Characterization of the prepared nanomaterials was conducted using transmission electron microscopy, steady-state fluorescence spectroscopy and the X-ray diffraction method. The results indicated that the synthesized ternary nanomaterials displayed excellent photoelectrochemical performance, which was much better than that of ZnO@graphene QDs and pristine ZnO quantum dots. The graphene and ZnO quantum dots formed an effective interfacial electric field, enhancing photogenerated electron-hole pairs separation and leading to a remarkable improvement in the photoelectrochemical performance of ZnO@graphene QDs. The strong surface plasmon resonance effect achieved by directly attaching Au nanoparticles to ZnO@graphene QDs led to a notable increase in the photocurrent response through electrochemical field effect amplification. Based on the specifical recognition between cysteine and Au-ZnO@graphene QDs/ITO through the specificity of Au-S bonds, a light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine with an extremely low detection limit of 8.9 nM and excellent selectivity. Hence, the Au-ZnO@graphene QDs is a promising candidate as a novel advanced photosensitive material in the field of photoelectrochemical biosensing.

5.
Small ; 16(14): e2001003, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32162848

RESUMO

Fluorescence in the second near-infrared window (NIR-II, 900-1700 nm) has drawn great interest for bioimaging, owing to its high tissue penetration depth and high spatiotemporal resolution. NIR-II fluorophores with high photoluminescence quantum yield (PLQY) and stability along with high biocompatibility are urgently pursued. In this work, a Ag-rich Ag2 Te quantum dots (QDs) surface with sulfur source is successfully engineered to prepare a larger bandgap of Ag2 S shell to passivate the Ag2 Te core via a facile colloidal route, which greatly enhances the PLQY of Ag2 Te QDs and significantly improves the stability of Ag2 Te QDs. This strategy works well with different sized core Ag2 Te QDs so that the NIR-II PL can be tuned in a wide range. In vivo imaging using the as-prepared Ag2 Te@Ag2 S QDs presents much higher spatial resolution images of organs and vascular structures as compared with the same dose of Ag2 Te nanoprobes administrated, suggesting the success of the core-shell synthetic strategy and the potential biomedical applications of core-shell NIR-II nanoprobes.

6.
Small ; 15(1): e1804156, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30480357

RESUMO

A nonvolatile memory with a floating gate structure is fabricated using ZnSe@ZnS core-shell quantum dots as discrete charge-trapping/tunneling centers. Systematical investigation reveals that the spontaneous recovery of the trapped charges in the ZnSe core can be effectively avoided by the type-I energy band structure of the quantum dots. The surface oleic acid ligand surrounding the quantum dots can also play a role of energy barrier to prevent unintentional charge recovery. The device based on the quantum dots demonstrates a large memory window, stable retention, and good endurance. What is more, integrating charge-trapping and tunneling components into one quantum dot, which is solution synthesizable and processible, can largely simplify the processing of the floating gate nonvolatile memory. This research reveals the promising application potential of type-I core-shell nanoparticles as the discrete charge-trapping/tunneling centers in nonvolatile memory in terms of performance, cost, and flexibility.

7.
Nano Lett ; 17(3): 1629-1636, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28183177

RESUMO

The effect of lattice fluctuations and electronic excitations on the radiative rate is demonstrated in CdSe/CdS core/shell spherical quantum dots (QDs). Using a combination of time-resolved photoluminescence spectroscopy and atomistic simulations, we show that lattice fluctuations can change the radiative rate over the temperature range from 78 to 300 K. We posit that the presence of the core/shell interface plays a significant role in dictating this behavior. We show that the other major factor that underpins the change in radiative rate with temperature is the presence of higher energy states corresponding to electron excitation into the shell. These effects should be present in other core/shell samples and should also affect other excited state rates, such as the rate of Auger recombination or the rate of charge transfer.

8.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671559

RESUMO

A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.


Assuntos
Pontos Quânticos , Compostos de Cádmio , Glucose , Compostos de Selênio , Sulfetos , Sulfato de Zinco
9.
Small ; 12(38): 5354-5365, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515385

RESUMO

Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of "giant" CdSe/Cdx Pb1-x S core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes "giant" CdSe/Cdx Pb1-x S QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100-300 K). Subsequently these thick alloyed-shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300-600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure-CdS-shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in "giant" QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs.

10.
Chemphyschem ; 16(18): 3871-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26432977

RESUMO

The effect of one and two monolayers of ZnS shells on the photostability of CdTe quantum dots (QDs) in aqueous and nonaqueous media has been studied by monitoring the fluorescence behavior of the QDs under ensemble and single-molecule conditions. ZnS capping of the CdTe QDs leads to significant enhancement of the fluorescence brightness of these QDs. Considerable enhancement of the photostability of the shell-protected QDs, including the suppression of photoactivation, is also observed. Fluorescence correlation spectroscopy measurements reveal an increase in the number of particles undergoing reversible fluorescent on-off transitions in the volume under observation with increasing excitation power; this effect is found to be more pronounced in the case of core-only QDs than for core-shell QDs.

11.
Luminescence ; 29(8): 1095-101, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24898670

RESUMO

Eu-doped ZnSe:/ZnS quantum dots (formed as ZnSe:Eu/ZnS QDs) were successfully synthesized by a two-step wet chemical method: nucleation doping and epitaxial shell growing. The sensitization characteristics of Eu-doped ZnSe and ZnSe/ZnS core/shell QD are studied in detail using photoluminescence (PL), PL excitation spectra (PLE) and time-resolved PL spectroscopy. The emission intensity of Eu ions is enhanced and that of ZnSe QDs is decreased, implying that energy was transferred from the excited ZnSe host materials (the donor) to the doped Eu ions (the acceptor). PLE reveals that the ZnSe QDs act as an antenna for the sensitization of Eu ions through an energy transfer process. The dynamics of ZnSe:Eu/ZnS core/shell quantum dots with different shell thicknesses and doping concentrations are studied via PL spectra and fluorescence lifetime spectra. The maximum phosphorescence efficiency is obtained when the doping concentration of Eu is approximately 6% and the sample showed strong white light under ultraviolet lamp illumination. By surface modification with ZnS shell layer, the intensity of Eu-related PL emission is increased approximately three times compared with that of pure ZnSe:Eu QDs. The emission intensity and wavelength of ZnSe:Eu/ZnS core/shell quantum dots can be modulated by different shell thickness and doping concentration. The results provide a valuable insight into the doping control for practical applications in laser, light-emitting diodes and in the field of biotechnology.


Assuntos
Európio/química , Luminescência , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Ácido 3-Mercaptopropiônico/química , Transferência de Energia , Microscopia Eletrônica de Transmissão , Pontos Quânticos/química , Espectrometria de Fluorescência
12.
ACS Appl Mater Interfaces ; 16(11): 14072-14081, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442356

RESUMO

Conventional luminescent solar concentrators (LSCs) usually only have the ability to absorb solar energy and convert it to electricity but are not able to regulate the transmitted light. Herein, a multistate thermoresponsive smart window (SW) based on LSC has been fabricated, in which the stimuli-responsive host layer consists of polydimethylsiloxane (PDMS) and ethylene glycol solution (EGS) microdroplets stacking with LSC layer-based on near-infrared (NIR) CuInSe2-xSx/ZnS core/shell quantum dots (QDs) and PDMS matrix. As-synthesized CISSe/ZnS QDs with broad NIR absorption in LSC exhibit controllable emission spectra over 833-1088 nm and high photoluminescence (PL) quantum yield from 45 to 83%. Coupling with Si solar cells as a reference, optimized LSC-SW devices with dimensions of 5 × 5 × 0.9 cm3 exhibit higher power conversion efficiency (PCE) of 1.19-1.36% with increased temperature from 0 to 50 °C than those of sole LSC and SW devices. The corresponding visible light transmissions are regulated from 75.1 to 48.1% accordingly. The improvement of PCEs in an opaque state is mainly due to enhanced absorption of QDs originating from rescattered photons from the EGS/PDMS layer, leading to more emitted photons reaching photovoltaics. This work is expected to bring up new opportunities for applications in greenhouses, building facades, and energy-efficient smart windows.

13.
Anal Sci ; 40(6): 1051-1059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461465

RESUMO

A fluorescent sensing material based on the ternary core-shell quantum dots with outstanding optical properties and a bio-inspired molecularly imprinted polymer (MIP) as a recognition element has been prepared for selective detection of rifampicin (RFP). Firstly, AgInS2/ZnS core/shell quantum dots (ZAIS QDs) were prepared by a hydrothermal process. Then, the fluorescent sensor was prepared by coating these QDs by a dopamine-based MIP layer. The fluorescence of MIP@ZAIS QDs was quenched by RFP probably due to the photoinduced electron transfer process. The quenching constant was much higher for MIP@ZAIS QDs than the non-imprinted polymer@QDs, indicating that MIP@ZAIS QDs could selectively recognize RFP. Under the optimized conditions, the sensor had a good linear relationship at the RFP concentration range of 5.0 to 300 nM and the limit of detection was 1.25 nM. The respond time of the MIP@ZAIS QDs was 5 min, and the imprinting factor was 6.3. It also showed good recoveries ranging from 98 to 101%, for analysis of human plasma samples. The method is simple and effective for the detection of RFP and offers a practical application for the rapid analysis of human plasma samples.


Assuntos
Polímeros Molecularmente Impressos , Pontos Quânticos , Rifampina , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Compostos de Zinco/química , Sulfetos/química , Rifampina/sangue , Rifampina/análise , Rifampina/química , Polímeros Molecularmente Impressos/química , Humanos , Corantes Fluorescentes/química , Impressão Molecular , Espectrometria de Fluorescência , Índio/química , Compostos de Prata/química , Limite de Detecção , Polímeros/química
14.
Adv Mater ; 35(1): e2207678, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333885

RESUMO

The use of colloidal quantum dots (CQDs) as a gain medium in infrared laser devices has been underpinned by the need for high pumping intensities, very short gain lifetimes, and low gain coefficients. Here, PbS/PbSSe core/alloyed-shell CQDs are employed as an infrared gain medium that results in highly suppressed Auger recombination with a lifetime of 485 ps, lowering the amplified spontaneous emission (ASE) threshold down to 300 µJ cm-2 , and showing a record high net modal gain coefficient of 2180 cm-1 . By doping these engineered core/shell CQDs up to nearly filling the first excited state, a significant reduction of optical gain threshold is demonstrated, measured by transient absorption, to an average-exciton population-per-dot 〈Nth 〉g of 0.45 due to bleaching of the ground state absorption. This in turn have led to a fivefold reduction in ASE threshold at 〈Nth 〉ASE  = 0.70 excitons-per-dot, associated with a gain lifetime of 280 ps. Finally, these heterostructured QDs are used to achieve near-infrared lasing at 1670 nm at a pump fluences corresponding to sub-single-exciton-per-dot threshold (〈Nth 〉Las  = 0.87). This work brings infrared CQD lasing thresholds on par to their visible counterparts, and paves the way toward solution-processed infrared laser diodes.

15.
ChemistryOpen ; 11(12): e202200232, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36457175

RESUMO

From aqueous precursor solutions of metal salts and sodium sulfide using MicroJet Reactor (MJR) technology Cd1-x Znx S and CdS/ZnS core/shell semiconductor nanoparticles were synthesized. The MJR approach represents an automated, continuous, flexible and scalable route for nanoparticle synthesis, providing a tight control over process parameters and thus simple size, shape and composition control. Since particle sizes below the excitonic Bohr radius were obtained by MJR, the nanoparticulate materials exhibit quantum confinement effects. By varying the precursor ratio the band gap of Cd1-x Znx S Quantum Dots (QDs) could be targeted from 3.1 to 3.6 eV. CdS/ZnS core/shell QDs were prepared by enclosing CdS particles from MJR with ZnS produced by thermal decomposition of a Zn-MPA complex. Adjustment of the shell thickness increased the photoluminescence intensity by 43 %. Synthesis of ternary sulfides in the form of core/shell particles broadens the spectrum of materials accessible by MJR and demonstrates the extraordinary flexibility of the technology.

16.
Nanomaterials (Basel) ; 11(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34685059

RESUMO

The surface of any binary or multi-component nanocrystal has imperfections and defects. The number of surface defects depends both on the nature of the nanomaterial and on the method of its preparation. One of the possibilities to confine the number of surface defects is the epitaxial growth of the shell, which leads to a change in the physical properties while maintaining the morphology of the core. To form a shell of the desired thickness, an accurate calculation of the amount of its precursors is substantial to avoid the appearance of individual crystals consisting of the shell material. This study aimed to develop an effective calculation method for the theoretical amount of precursors required for the formation of a ZnS shell on the surface of a Cd0.25Zn0.75Se core, followed by the practical implementation of theoretical calculations and characterization of the prepared nanomaterials. This method allows the complete control of the masses and volumes of the initial reagents, which will in turn prevent undesirable nucleation of nuclei consisting of the shell material. In the synthesis of Cd0.25Zn0.75Se/ZnS core/shell quantum dots (QDs), the sources of chalcogens were substituted seleno- and thioureas, which are capable of not only supplanting modern toxic sources of sulfur and selenium but also allowing one to perform the controlled synthesis of highly photoluminescent QDs with a low number of surface defects. The result of this shell overcoating method was an impetuous augmentation in the photoluminescence quantum yield (PL QY up to 83%), uniformity in size and shape, and a high yield of nanomaterials. The developed synthetic technique of core/shell QDs provides a controlled growth of the shell on the core surface, which makes it possible to transfer this method to an industrial scale.

17.
Adv Sci (Weinh) ; 8(22): e2102784, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34647434

RESUMO

CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very challenging to image the interface. Herein, high-resolution transmission electron microscopy, high-angle annular dark-field imaging, and energy-dispersive X-ray spectroscopy elemental mapping are combined to characterize the core@shell structure and identify the interface in the CdSe@CdS QDs with different CdS shell thicknesses. By examining changes in lattice spacing in an individual CdSe@CdS quantum dot, the atomic core@shell interface is identified. For thin-shelled QDs, an ideal coherent interface forms between core and shell due to the small lattice mismatch, and the lattice spacing remains unchanged at the core and shell regions. For thick-shelled QDs, the lattice spacing is different at the core and shell regions, while the heterostructured interface is still coherent and cannot be clearly imaged. As the shell thickness further increases, a sharp core@shell interface appears. The results define an approach to characterize the heterostructure of two materials with the same crystalline structure and cations.

18.
Adv Sci (Weinh) ; 8(16): e2100513, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34174170

RESUMO

Efficient charge storage media play a pivotal role in transistor-based memories and thus are under intense research. In this work, the charge storage ability of type-I InP/ZnS core/shell quantum dots is well revealed through studying a pentacene-based organic transistor with the quantum dots (QDs) integrated. The quantum well-like energy band structure enables the QDs to directly confine either holes or electrons in the core, signifying a dielectric layer-free nonvolatile memory. Especially, the QDs in this device can be charged by electrons using light illumination as the exclusive method. The electron charging process is ascribed to the photoexcitation process in the InP-core and the hot holes induced. The QDs layer demonstrates an electron storage density of ≈5.0 × 1011  cm-2 and a hole storage density of ≈6.4 × 1011  cm-2 . Resultingly, the output device shows a fast response speed to gate voltage (10 µs), large memory window (42 V), good retention (>4.0 × 104 s), and reliable endurance. This work suggests that the core/shell quantum dot as a kind of charge storage medium is of great promise for optoelectronic memories.

19.
Front Chem ; 8: 669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195004

RESUMO

In this study, the CuInS2/ZnS core/shell quantum dots (QDs) were prepared via simple and environmentally friendly solvothermal synthesis and were used as phosphors for white light-emitting diodes (WLEDs). The surface defect of the CuInS2 core QDs were passivated by the ZnS shell by forming CuInS2/ZnS core/shell QDs. By adjusting the Cu/In ratio and the nucleation temperature, the photoluminescence (PL) peak of the CuInS2 QDs was tunable in a range of 651-775 nm. After coating the ZnS layer and modifying oleic acid ligands, the PL quantum yield increased to 85.06%. The CuInS2/ZnS QD powder thermal stability results showed that the PL intensity of the QDs remained 91% at 100°C for 10 min. High color rendering index values (CRI, 90) and correlated color temperature of 4360 K for the efficient WLEDs were fabricated using CuInS2/ZnS QDs and (Ba,Sr)2SiO4:Eu2+ as color converters in combination with a blue GaN light-emitting diode chip.

20.
Talanta ; 201: 309-316, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31122428

RESUMO

Two different colors of water-soluble core-shell quantum dots CdTe/CdS (green and orange red) have been synthesized and characterized in this paper. The formation of core-shell quantum dots not only improves the fluorescence quantum yield, but also reduces the biological toxicity of quantum dots, and improves the fluorescence lifetime. Two novel fluorescent bioprobes, CdTe/CdS (λem = 545 nm)-5-Fu and Bio-CdTe/CdS (λem = 600 nm)-TAM, have been synthesized via the interaction of these two core-shell quantum dots with anticancer drugs (5-Fu) and P-gp inhibitors (TAM), respectively. These two fluorescent probes have been simultaneously used in fluorescence imaging of human breast cancer cells MDA-MB-231/MDR. It can be observed that under the action of P-gp inhibitors distributed on the cell membrane, anticancer drugs can be retained in cancer cells. According to the color of quantum dots on the probe, the visualization results of the action of anticancer drugs and P-gp inhibitors can be obtained. This study shows that to prepare functional bioprobes using core-shell quantum dots CdTe/CdS has great potential in the field of biomedical research such as anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Corantes Fluorescentes/química , Pontos Quânticos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Cádmio/química , Cádmio/toxicidade , Compostos de Cádmio/química , Compostos de Cádmio/toxicidade , Linhagem Celular Tumoral , Fluorescência , Corantes Fluorescentes/toxicidade , Fluoruracila/farmacologia , Humanos , Pontos Quânticos/toxicidade , Solubilidade , Espectrometria de Fluorescência/métodos , Sulfetos/química , Sulfetos/toxicidade , Tamoxifeno/farmacologia , Telúrio/química , Telúrio/toxicidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA