Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Exp Eye Res ; 217: 108936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093391

RESUMO

The cornea is one of the major refractive eye components and could be easily injured. An ineffective healing of corneal stromal wound may cause fibrosis and even loss of vision. Therefore, it is pivotal to prevent corneal fibrosis after injury. In this study, a poly (ε-caprolactone) (PCL) microfibrous scaffold infused with rat tail collagen type I was fabricated to obtain a 3D composite material. Physical and biological properties of PCL/collagen scaffold were evaluated, the effect of PCL/collagen scaffold on the proliferation and differentiation of limbal stromal stem cells (LSSCs) were detected in vitro, the differentiation of keratocytes as well as the expression and arrangement of extracellular matrix (ECM) influenced by PCL/collagen scaffold were investigated in vivo. RNA-sequencing on normal and injured corneas was carried out to find out the differential enriched pathways and gene expression. We discovered that the PCL/collagen scaffold simulated the stromal structure with properties that were most similar to the native cornea, the PCL/collagen scaffold exhibited good mechanical and biological properties. We also observed that the PCL/collagen scaffold reduced keratocyte differentiation. Injured corneas treated with PCL/collagen scaffold exhibited more regular collagen distribution and less fibroblasts and myofibroblasts distribution. By RNA-sequencing, we observed that in injured group, ECM-related pathway was enriched and several ECM-related genes were up-regulated. This study provides evidence that application of PCL/collagen scaffold could be a new therapeutic strategy for corneal injury.


Assuntos
Lesões da Córnea , Substância Própria , Animais , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Córnea/metabolismo , Lesões da Córnea/metabolismo , Substância Própria/metabolismo , Fibrose , RNA/metabolismo , Ratos , Cauda/metabolismo
2.
Exp Eye Res ; 218: 109027, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276182

RESUMO

The vast majority of patients with corneal blindness cannot recover their vision due to the serious shortage of donor cornea. However, the technology to construct a feasible corneal substitute is a promising treatment method for corneal blindness. In this paper, methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA) double network (GHDN) hydrogels were prepared by modifying gelatin and hyaluronic acid with methacrylate anhydride (MA). GHDN hydrogel was compared with GelMA single network and HAMA single network hydrogels through characterization experiments of mechanical properties, optical properties, hydrophilicity and in-situ degradation in vitro. At the same time, the biocompatibility of hydrogel was tested by inoculating rabbit corneal epithelial cells (CEpCs) epidermal cells on hydrogels using CCK-8 test, live/dead staining, immunofluorescence staining and qRT-PCR. It was found that the GHDN hydrogel has optical transparency in the visible region, and its mechanical properties are better than those of GelMA and HAMA hydrogels, and its hydrophilicity is similar to that of normal human corneas. The results of in vitro hydrogel culture of CEpCs showed that the proliferation of CEpCs on GHDN hydrogel was two times higher than that of HAMA hydrogel, and the expression of specific marker Cytokeratin 3 (CK3) and Cytokeratin 12 (CK12) could be better maintained on GHDN hydrogel. All the experimental results proved that GHDN hydrogel has good physical properties and biocompatibility and is a potential candidate for corneal tissue engineering scaffolds.


Assuntos
Epitélio Corneano , Engenharia Tecidual , Animais , Cegueira , Gelatina , Humanos , Ácido Hialurônico , Hidrogéis , Coelhos , Engenharia Tecidual/métodos
3.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269891

RESUMO

The fate decision of limbal epithelial progenitor cells (LEPC) at the human corneal limbus is determined by the surrounding microenvironment with limbal niche cells (LNC) as one of its essential components. Research on freshly isolated LNC which mainly include limbal mesenchymal stromal cells (LMSC) and limbal melanocytes (LM) has been hampered by a lack of efficient protocols to isolate and purify these cells. We devised a protocol for rapid retrieval of pure LMSC, LM and LEPC populations by collagenase digestion of limbal tissue and subsequent fluorescence-activated cell sorting (FACS) using antibodies against CD90 and CD117. The sorted cells were characterized by immunophenotyping and functional assays. The effects of LMSC and LM on LEPC were studied in 3D co-cultures and LEPC differentiation status was assessed by immunohistochemistry. Enzymatic digestion and flow sorting yielded pure populations of LMSC (CD117-CD90+), LM (CD117+CD90-), and LEPC (CD117-CD90-). The LMSC exhibited self-renewal capacity (55.0 ± 4.6 population doublings), expressed mesenchymal stem cell markers (CD73, CD90, CD105, and CD44), and transdifferentiated to adipocytes, osteocytes, or chondrocytes. The LM exhibited self-renewal capacity and sustained melanin production. The sorted LEPC expressed epithelial progenitor markers (CK14, CK19, and CK15) and showed a colony-forming ability. Co-cultivation of LMSC and LM with LEPC resulted in a 4-5-layered stratified epithelium and supported the preservation of a LEPC phenotype, as reflected by increased p63+ and Ki67+ cells and decreased CK12+ cells compared with LEPC monocultures. A highly efficient isolation of pure LM, LMSC, and LEPC populations from a single preparation may allow for direct transcriptomic and proteomic profiling as well as functional studies on native unpassaged LNC, which can be considered as proper equivalents of LNC in vivo. The developed biomimetic 3D co-culture method could provide an experimental model for investigating the functional role of LNC in the limbal stem cell niche.


Assuntos
Epitélio Corneano , Limbo da Córnea , Biomarcadores , Diferenciação Celular , Células Cultivadas , Células Epiteliais , Humanos , Proteômica , Nicho de Células-Tronco/fisiologia
4.
Exp Eye Res ; 151: 26-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456135

RESUMO

In order to expand cells quickly and in high numbers for corneal tissue engineering applications corneal stromal cells, or keratocytes, are often cultured in the presence of serum. However, keratocytes become fibroblastic when exposed to serum leading to a downregulation of corneal stromal specific markers. The purpose of this current study was to determine if corneal stromal cells, made fibroblastic by serum, could display native quiescent keratocyte characteristics when cultured under serum-free conditions supplemented by different growth factors. Markers specific to a native keratocyte phenotype such as keratocan and aldehyde dehydrogenase 3A1 (ALDH3A1) and those specific to a fibrotic phenotype such as α-smooth muscle actin (αSMA) and collagen type III were examined. Cells were cultured in monolayer, self-assembled pellets or collagen hydrogels. Growth factors known to modulate keratocyte phenotype were chosen to supplement the serum free media, specifically insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 and 3 (Tß1 and Tß3). The effects of serum-free media, growth factors and culture system on cell proliferation and morphology and extracellular matrix (ECM) synthesis were evaluated. The expression of keratocyte markers was evaluated by real-time PCR, immunofluorescent staining and western blotting. In addition, cell migration was tested using scratch assays. When serum was removed from the cells they displayed a reduction in proliferation and ECM synthesis (not significant), in addition to a significant decrease in migratory capacity (p < 0.05). Serum-free media promoted increased expression of keratocan (130.68 ± 47.44-fold increase; p < 0.05) and collagen type I (15.58 ± 9.49-fold increase; p < 0.05). However, there was no significant change in ALDH3A1 and αSMA expression, while collagen type III expression was significantly increased (44.66 ± 25.61-fold increase; p < 0.05). In addition, cells retained an elongated fibroblastic morphology. In monolayer, the addition of Tß1 and Tß3 to serum free media resulted in reduced expression of keratocan, ALDH3A1 and collagen type I and III, increased expression of αSMA (p < 0.05) and an increase in cell proliferation and ECM synthesis. Pellet cultured cells demonstrated a significant increase in ALDH3A1 and collagen type I over 14 days relative to day 5 (p < 0.05), however the expression of fibrotic markers was also enhanced. Cells in collagen hydrogels did not increase expression of keratocyte markers in serum free conditions and underwent contraction in Tß1 and Tß3 supplemented media. These results demonstrate that corneal fibroblasts only partially express the phenotypic characteristics of keratocytes when cultured in serum-free medium. While growth factors did not significantly enhance this phenotype, it appears that pellet or self-assembled culture could be more beneficial to promoting a keratocyte phenotype.


Assuntos
Substância Própria/efeitos dos fármacos , Proteínas da Matriz Extracelular/biossíntese , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/farmacologia , Adulto , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/efeitos dos fármacos , Ceratócitos da Córnea/metabolismo , Substância Própria/citologia , Substância Própria/metabolismo , Meios de Cultura Livres de Soro/farmacologia , DNA/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Humanos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
5.
J Biomater Sci Polym Ed ; 35(5): 717-755, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214998

RESUMO

Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Colágeno/química , Células-Tronco , Regeneração , Impressão Tridimensional
6.
J Biomed Mater Res B Appl Biomater ; 112(8): e35449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032135

RESUMO

The limited availability of a healthy donor cornea and the incidence of allograft failure led researchers to seek other corneal substitutes via tissue engineering. Exploring the trend of clinical trials of the cornea with the vision of tissue engineering provides an opportunity to reveal future potential corneal substitutes. The results of this clinical trial are beneficial for future study designs to overcome the limitations of current therapeutic approaches. In this study, registered clinical trials of bio-based approaches were reviewed for corneal regeneration on March 22, 2024. Among the 3955 registered trials for the cornea, 392 trials were included in this study, which categorized in three main bio-based scaffolds, stem cells, and bioactive macromolecules. In addition to the acellular cornea and human amniotic membrane, several bio-based materials have been introduced as corneal substrates such as collagen, fibrin, and agarose. However, some synthetic materials have been introduced in recent studies to improve the desired properties of bio-based scaffolds for corneal substitutes. Nevertheless, new insights into corneal regenerative medicine have recently emerged from cell sheets with autologous and allogeneic cell sources. In addition, the future perspective of corneal regeneration is described through a literature review of recent experimental models.


Assuntos
Ensaios Clínicos como Assunto , Córnea , Doenças da Córnea , Engenharia Tecidual , Humanos , Doenças da Córnea/terapia , Córnea/metabolismo , Alicerces Teciduais/química , Regeneração , Animais , Medicina Regenerativa , Transplante de Córnea
7.
Bioeng Transl Med ; 8(4): e10531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476050

RESUMO

Corneal blindness is a worldwide major cause of vision loss, and corneal transplantation remains to be the most effective way to restore the vision. However, often there is a shortage of the donor corneas for transplantation. Therefore, it is urgent to develop a novel tissue-engineered corneal substitute. The present study envisaged the development of a novel and efficient method to prepare the corneal stromal equivalent from the marine biomaterials-squid. A chemical method was employed to decellularize the squid mantle scaffold to create a cell-free tissue substitute using 0.5% sodium dodecyl sulfate (SDS) solution. Subsequently, a novel clearing method, namely clear, unobstructed brain imaging cocktails (CUBIC) method was used to transparent it. Decellularized squid mantle scaffold (DSMS) has high decellularization efficiency, is rich in essential amino acids, and maintains the regular fiber alignment. In vitro experiments showed that the soaking solution of DSMS was non-toxic to human corneal epithelium cells. DSMS exhibited a good biocompatibility in the rat muscle by undergoing a complete degradation, and promoted the growth of the muscle. In addition, the DSMS showed a good compatibility with the corneal stroma in the rabbit inter-corneal implantation model, and promoted the regeneration of the corneal stroma without any evident rejection. Our results indicate that the squid mantle can be a potential new type of tissue-engineered corneal stroma material with a promising clinical application.

8.
Macromol Biosci ; 23(7): e2200422, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36729619

RESUMO

Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.


Assuntos
Bioimpressão , Transplante de Córnea , Células-Tronco Mesenquimais , Suínos , Animais , Córnea , Transplante de Córnea/métodos , Substância Própria/cirurgia , Lasers , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Impressão Tridimensional
9.
Pharmaceutics ; 15(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376040

RESUMO

Dendrimers are biocompatible organic nanomaterials with unique physicochemical properties, making them the focus of recent research in drug delivery. The cornea of the human eye presents a challenge for drug transit due to its inherently impenetrable nature, requiring nanocarrier-mediated targeted drug delivery. This review intends to examine recent advancements in the use of dendrimers for corneal drug delivery, including their properties and their potential for treating various ocular diseases. The review will also highlight the benefit of the novel technologies that have been developed and applied in the field, such as corneal targeting, drug release kinetics, treatments for dry eye disease, antibacterial drug delivery, corneal inflammation, and corneal tissue engineering. The review seeks to provide a comprehensive overview of the current state of research in this field, along with the translational developments in the field of dendrimer-based therapeutics and imaging agents and inspire the potential for future developments and translational opportunities in dendrimers based corneal drug delivery.

10.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559289

RESUMO

Corneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration. Several approaches are tested to develop a substrate with equal transmittance and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted scaffolds have recently received sufficient attention in simulating corneal structure, owing to their spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this review, the anatomy and function of different layers of corneal tissue are highlighted, and then the potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed.

11.
Tissue Eng Regen Med ; 19(1): 59-72, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665455

RESUMO

BACKGROUND: Corneal disease is second only to cataract considered as the leading cause of blindness in the world, with high morbidity. Construction of corneal substitutes in vitro by tissue engineering technology to achieve corneal regeneration has become a research hotspot in recent years. We conducted in-depth research on the biocompatibility, physicochemical and mechanical properties of rat bone marrow mesenchymal stem cells (rBM-MSCs)-seeded gelatin methacrylate (GelMA) as a bioengineered cornea. METHODS: Four kinds of GelMA with different concentrations (7, 10, 15 and 30%) were prepared, and their physic-chemical, optical properties, and biocompatibility with rBM-MSCs were characterized. MTT, live/dead staining, cell morphology, immunofluorescence staining and gene expression of keratocyte markers were performed. RESULTS: 7%GelMA hydrogel had higher equilibrium water content and porosity, better optical properties and hydrophilicity. In addition, it is more beneficial to the growth and proliferation of rBM-MSCs. However, the 30%GelMA hydrogel had the best mechanical properties, and could be more conducive to promote the differentiation of rBM-MSCs into keratocyte-like cells. CONCLUSION: As a natural biological scaffold, GelMA hydrogel has good biocompatibility. And it has the ability to promote the differentiation of rBM-MSCs into keratocyte-like cells, which laid a theoretical and experimental foundation for further tissue-engineered corneal stromal transplantation, and provided a new idea for the source of seeded cells in corneal tissue engineering.


Assuntos
Gelatina , Engenharia Tecidual , Animais , Córnea , Gelatina/química , Hidrogéis/química , Metacrilatos , Ratos
12.
Stem Cell Rev Rep ; 18(8): 2817-2832, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35913555

RESUMO

Deficiency and dysfunction of corneal cells leads to the blindness observed in corneal diseases such as limbal stem cell deficiency (LSCD) and bullous keratopathy. Regenerative cell therapies and engineered corneal tissue are promising treatments for these diseases [1]. However, these treatments are not yet clinically feasible due to inadequate cell sources. The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has provided a multitude of opportunities in research because iPSCs can be generated from somatic cells, thus providing an autologous and unlimited source for corneal cells. Compared to other stem cell sources such as mesenchymal and embryonic, iPSCs have advantages in differentiation potential and ethical concerns, respectively. Efforts have been made to use iPSCs to model corneal disorders and diseases, drug testing [2], and regenerative medicine [1]. Autologous treatments based on iPSCs can be exorbitantly expensive and time-consuming, but development of stem cell banks with human leukocyte antigen (HLA)- homozygous cell lines can provide cost- and time-efficient allogeneic alternatives. In this review, we discuss the early development of the cornea because protocols differentiating iPSCs toward corneal lineages rely heavily upon recapitulating this development. Differentiation of iPSCs toward corneal cell phenotypes have been analyzed with an emphasis on feeder-free, xeno-free, and well-defined protocols, which have clinical relevance. The application, challenges, and potential of iPSCs in corneal research are also discussed with a focus on hurdles that prevent clinical translation.


Assuntos
Doenças da Córnea , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular/genética , Córnea , Linhagem Celular , Doenças da Córnea/terapia
13.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497012

RESUMO

Limbal stem cell deficiency (LSCD) is a complex, multifactorial disease affecting limbal epithelial progenitor cells (LEPC), which are essential for maintaining corneal stability and transparency. Human induced pluripotent stem cell-derived (hiPSC-) LEPC are a promising cell source for the treatment of LSCD. However, their similarity to native tissue-derived (T-) LEPC and their functional characterization has not been studied in detail. Here, we show that hiPSC-LEPC and T-LEPC have rather similar gene expression patterns, colony-forming ability, wound-healing capacity, and melanosome uptake. In addition, hiPSC-LEPC exhibited lower immunogenicity and reduced the proliferation of peripheral blood mononuclear cells compared with T-LEPC. Similarly, the hiPSC-LEPC secretome reduced the proliferation of vascular endothelial cells more than the T-LEPC secretome. Moreover, hiPSC-LEPC successfully repopulated decellularized human corneolimbal (DHC/L) scaffolds with multilayered epithelium, while basal deposition of fibrillary material was observed. These findings suggest that hiPSC-LEPC exhibited functional properties close to native LEPC and that hiPSC-LEPC-DHC/L scaffolds might be feasible for transplantation in patients suffering from LSCD in the future. Although hiPSC-LEPC-based stem cell therapy is promising, the current study also revealed new challenges, such as abnormal extracellular matrix deposition, that need to be overcome before hiPSC-LEPC-based stem cell therapies are viable.


Assuntos
Epitélio Corneano , Células-Tronco Pluripotentes Induzidas , Limbo da Córnea , Humanos , Epitélio Corneano/metabolismo , Células Endoteliais , Leucócitos Mononucleares
14.
Cells ; 11(12)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741104

RESUMO

Interactions between limbal epithelial progenitor cells (LEPC) and surrounding niche cells, which include limbal mesenchymal stromal cells (LMSC) and melanocytes (LM), are essential for the maintenance of the limbal stem cell niche required for a transparent corneal surface. P-cadherin (P-cad) is a critical stem cell niche adhesion molecule at various epithelial stem cell niches; however, conflicting observations were reported on the presence of P-cad in the limbal region. To explore this issue, we assessed the location and phenotype of P-cad+ cells by confocal microscopy of human corneoscleral tissue. In subsequent fluorescence-activated cell sorting (FACS) experiments, we used antibodies against P-cad along with CD90 and CD117 for the enrichment of LEPC, LMSC and LM, respectively. The sorted cells were characterized by immunophenotyping and the repopulation of decellularized limbal scaffolds was evaluated. Our findings demonstrate that P-cad is expressed by epithelial progenitor cells as well as melanocytes in the human limbal epithelial stem cell niche. The modified flow sorting addressing P-cad as well as CD90 and CD117 yielded enriched LEPC (CD90-CD117-P-cad+) and pure populations of LMSC (CD90+CD117-P-cad-) and LM (CD90-CD117+P-cad+). The enriched LEPC showed the expression of epithelial progenitor markers and better colony-forming ability than their P-cad- counterparts. The cultured LEPC and LM exhibited P-cad expression at intercellular junctions and successfully repopulated decellularized limbal scaffolds. These data suggest that P-cad is a critical cell-cell adhesion molecule, connecting LEPC and LM, which may play an important role in the long-term maintenance of LEPC at the limbal stem cell niche; moreover, these findings led to further improvement of cell enrichment protocols to enhance the yield of LEPC.


Assuntos
Limbo da Córnea , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Melanócitos/metabolismo , Nicho de Células-Tronco , Células-Tronco
15.
Bioengineering (Basel) ; 8(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34821727

RESUMO

Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.

16.
J Biomed Mater Res B Appl Biomater ; 109(10): 1488-1504, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33538123

RESUMO

The in vitro reconstruction of stromal tissue by long-term cultivation of corneal fibroblasts is a smart approach for regenerative therapies of ocular surface diseases. However, systematic investigations evaluating optimized cultivation protocols for the realization of a biomaterial are lacking. This study investigated the influence of supplements to the culture media of human corneal fibroblasts on the formation of a cell sheet consisting of cells and extracellular matrix. Among the supplements studied are vitamin C, fetal bovine serum, L-glutamine, components of collagen such as L-proline, L-4-hydroxyproline and glycine, and TGF-ß1, bFGF, IGF-2, PDGF-BB and insulin. After long-term cultivation, the proliferation, collagen and glycosaminoglycan content and light transmission of the cell sheets were examined. Biomechanical properties were investigated by tensile tests and the ultrastructure was characterized by electron microscopy, small-angle X-ray scattering, antibody staining and ELISA. The synthesis of extracellular matrix was significantly increased by cultivation with insulin or TGF-ß1, each with vitamin C. The sheets exhibited a high transparency and suitable material properties. The production of a transparent, scaffold-free, potentially autologous, in vitro-generated construct by culturing fibroblasts with extracellular matrix synthesis-stimulating supplements represents a promising approach for a biomaterial that can be used for ocular surface reconstruction in slowly progressing diseases.


Assuntos
Materiais Biocompatíveis/química , Substância Própria/metabolismo , Matriz Extracelular/metabolismo , Alicerces Teciduais/química , Ácido Ascórbico/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Meios de Cultura/metabolismo , Fibroblastos/citologia , Glutamina/metabolismo , Glicina/metabolismo , Humanos , Hidroxiprolina/metabolismo , Prolina/metabolismo , Regeneração , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual , Fator de Crescimento Transformador beta1/metabolismo
17.
Int J Biol Macromol ; 183: 1013-1025, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33974922

RESUMO

We develop a robust micro-patterned double-layer film that can adhere firmly to the tissue and provide a sustained release of ascorbic acid (AA) for corneal regeneration. This double-layer film consists of a AA reservoir sodium alginate (SA) adhesive and an anisotropic layer made of micro-patterned silk nanofibrils (SNF) incorporated gelatin methacrylate (GelMA) (S/G). The S/G layer facilitates the adhesion and orientation of corneal stroma cells, depending on the pattern sizes (50 µm (P1) and 100 (P2) µm). Results reveal that more than 90% and 80% of the cells are located at angles close to the vertical axis (0-20°) in the sample with the smaller and larger pattern size, respectively. The mechanical robustness and 90% light transmission of this hybrid film originate from the micro-patterned S/G layer. However, the micro-pattern size does not show a significant role in the mechanical properties of hybrid films (tensile strength of S/G-SA, S/G-SA(P1), and S/G-SA(P2) is 3.4 ± 0.1 MPa, 3.6 ± 0.6 MPa and 3.3 ± 0.2 MPa, respectively). In addition, the strong adhesion to the tissue of this double-layer film is related to the alginate layer. AA can release in a controlled manner, which can significantly promote corneal stroma cells' attachment, alignment, and proliferation compared to the control (AA-free micro-patterned film). Our results reveal that this innovative multifunctional S/G-SA + AA film can be a proper candidate for use in stroma tissue engineering of the human cornea.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alginatos/química , Humanos , Nanofibras/química
18.
ACS Appl Mater Interfaces ; 13(41): 49369-49379, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636236

RESUMO

Biomimetic scaffolds with transparent, biocompatible, and in situ-forming properties are highly desirable for corneal tissue engineering, which can deeply fill corneal stromal defects with irregular shapes and support tissue regeneration. We here engineer a novel class of corneal scaffolds from oligoethylene glycol (OEG)-based dendronized chitosans (DCs), whose aqueous solutions show intriguing sol-gel transitions triggered by physiological temperature, resulting in highly transparent hydrogels. Gelling points of these hydrogels can be easily tuned, and furthermore, their mechanical strengths can be significantly enhanced when injected into PBS at 37 °C instead of pure water. In vitro tests indicate that these DC hydrogels exhibit excellent biocompatibility and can promote proliferation and migration of keratocyte. When applied in the rabbit eyes with corneal stromal defects, in situ formed DC hydrogels play a positive effect for new tissue regeneration. Overall, this thermo-gelling DCs possess appealing features as corneal tissue substitutes with their excellent biocompatibility and unprecedented thermoresponsiveness.


Assuntos
Materiais Biomiméticos/química , Quitosana/análogos & derivados , Córnea/metabolismo , Dendrímeros/química , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/toxicidade , Movimento Celular/efeitos dos fármacos , Quitosana/toxicidade , Córnea/citologia , Córnea/cirurgia , Dendrímeros/toxicidade , Inflamação/metabolismo , Ceratectomia , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Coelhos , Células Estromais/efeitos dos fármacos , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos
19.
Bioengineering (Basel) ; 7(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640721

RESUMO

Corneal transplantation remains the ultimate treatment option for advanced stromal and endothelial disorders. Corneal tissue engineering has gained increasing interest in recent years, as it can bypass many complications of conventional corneal transplantation. The human cornea is an ideal organ for tissue engineering, as it is avascular and immune-privileged. Mimicking the complex mechanical properties, the surface curvature, and stromal cytoarchitecure of the in vivo corneal tissue remains a great challenge for tissue engineering approaches. For this reason, automated biofabrication strategies, such as bioprinting, may offer additional spatial control during the manufacturing process to generate full-thickness cell-laden 3D corneal constructs. In this review, we discuss recent advances in bioprinting and biomaterials used for in vitro and ex vivo corneal tissue engineering, corneal cell-biomaterial interactions after bioprinting, and future directions of corneal bioprinting aiming at engineering a full-thickness human cornea in the lab.

20.
J Tissue Eng Regen Med ; 14(9): 1318-1332, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652796

RESUMO

The shortage of donor corneas as well as the limitations of tissue substitutes leads to the necessity to develop alternative materials for ocular surface reconstruction. Corneal surface substitutes must fulfill specific requirements such as high transparency, low immunogenicity, and mechanical stability combined with elasticity. This in vitro study evaluates a decellularized matrix secreted from human corneal fibroblasts (HCF) as an alternative material for ocular surface reconstruction. HCF from human donors were cultivated with the supplementation of vitamin C to form a stable and thick matrix. Furthermore, due to enhanced cultivation time, a three-dimensional like multilayered construct which partly mimics the complex structure of the corneal stroma could be generated. The formed human cell-based matrices (so-called cell sheets [CS]) were subsequently decellularized. The complete cell removal, collagen content, ultrastructure, and cell toxicity of the decellularized CS (DCS) as well as biomechanical properties were analyzed. Surgical feasibility was tested on enucleated porcine eyes. After decellularization and sterilization, a transparent, thick, cell free, and sterile tissue substitute resulted, which allowed expansion of limbal epithelial stem cells with no signs of cytotoxicity, and good surgical feasibility. DCS seem to be a promising new corneal tissue substitute derived from human cells without the limitation of donor material; however, future in vivo studies are necessary to further elucidate its potential for ocular surface reconstruction.


Assuntos
Substância Própria/fisiologia , Procedimentos de Cirurgia Plástica , Engenharia Tecidual , Animais , Fenômenos Biomecânicos , Morte Celular , Colágeno/metabolismo , Substância Própria/ultraestrutura , Células Epiteliais/citologia , Humanos , Imagem Óptica , Reprodutibilidade dos Testes , Células-Tronco/citologia , Suínos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA