Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2314802121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498715

RESUMO

The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.


Assuntos
Células Ependimogliais , MAP Quinases Reguladas por Sinal Extracelular , Animais , Camundongos , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(19): 10554-10564, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32312821

RESUMO

A unique combination of transcription factor expression and projection neuron identity demarcates each layer of the cerebral cortex. During mouse and human cortical development, the transcription factor CTIP2 specifies neurons that project subcerebrally, while SATB2 specifies neuronal projections via the corpus callosum, a large axon tract connecting the two neocortical hemispheres that emerged exclusively in eutherian mammals. Marsupials comprise the sister taxon of eutherians but do not have a corpus callosum; their intercortical commissural neurons instead project via the anterior commissure, similar to egg-laying monotreme mammals. It remains unknown whether divergent transcriptional networks underlie these cortical wiring differences. Here, we combine birth-dating analysis, retrograde tracing, gene overexpression and knockdown, and axonal quantification to compare the functions of CTIP2 and SATB2 in neocortical development, between the eutherian mouse and the marsupial fat-tailed dunnart. We demonstrate a striking degree of structural and functional homology, whereby CTIP2 or SATB2 of either species is sufficient to promote a subcerebral or commissural fate, respectively. Remarkably, we reveal a substantial delay in the onset of developmental SATB2 expression in mice as compared to the equivalent stage in dunnarts, with premature SATB2 overexpression in mice to match that of dunnarts resulting in a marsupial-like projection fate via the anterior commissure. Our results suggest that small alterations in the timing of regulatory gene expression may underlie interspecies differences in neuronal projection fate specification.


Assuntos
Corpo Caloso/metabolismo , Eutérios/genética , Marsupiais/genética , Animais , Axônios/metabolismo , Evolução Biológica , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Corpo Caloso/fisiologia , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Humanos , Mamíferos/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Vias Neurais/fisiologia , Neurônios/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433589

RESUMO

The neocortex and olfactory cortices share many features including their laminar organization, developmental sequences, and cell types. Previous work indicates that neocortical pyramidal cells exhibit a gradient of dendritic size: cells involved in the initial processing of information are less complex than those in subsequent, higher processing areas. Results presented here confirm that the same is true for the olfactory cortex: pyramidal cells in the region closest to the olfactory bulb, the anterior olfactory nucleus, have smaller total dendritic length and occupy less neural space than those in the posterior piriform cortex. These findings add to the evidence for general rules of development, organization, and function across forebrain cortices.


Assuntos
Córtex Olfatório/metabolismo , Células Piramidais/metabolismo , Animais , Camundongos , Córtex Olfatório/citologia , Células Piramidais/citologia
4.
Cereb Cortex ; 29(11): 4488-4505, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30715235

RESUMO

The mammalian cerebral cortex is divided into different areas according to their function and pattern of connections. Studies comparing primary visual (V1) and prefrontal cortex (PFC) of primates have demonstrated striking pyramidal neuron (PN) specialization not present in comparable areas of the mouse neocortex. To better understand PFC evolution and regional PN specialization, we studied the tree shrew, a species with a close phylogenetic relationship to primates. We defined the tree shrew PFC based on cytoarchitectonic borders, thalamic connectivity and characterized the morphology and electrophysiology of layer II/III PNs in V1 and PFC. Similar to primates, the PFC PNs in the tree shrew fire with a regular spiking pattern and have larger dendritic tree and spines than those in V1. However, V1 PNs showed strikingly large basal dendritic arbors with high spine density, firing at higher rates and in a more varied pattern than PFC PNs. Yet, unlike in the mouse and unreported in the primate, medial prefrontal PN are more easily recruited than either the dorsolateral or V1 neurons. This specialization of PN morphology and physiology is likely to be a significant factor in the evolution of cortex, contributing to differences in the computational capacities of individual cortical areas.


Assuntos
Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Tupaiidae/anatomia & histologia , Tupaiidae/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Espinhas Dendríticas , Feminino , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Potenciais da Membrana , Vias Visuais/citologia , Vias Visuais/fisiologia
5.
Brain Behav Evol ; 93(2-3): 152-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416089

RESUMO

The coordination of progenitor self-renewal, neuronal production, and migration is essential to the normal development and evolution of the cerebral cortex. Numerous studies have shown that the Notch, Wnt/beta-catenin, and Neurogenin pathways contribute separately to progenitor expansion, neurogenesis, and neuronal migration, but it is unknown how these signals are coordinated. In vitro studies suggested that the mastermind-like 1 (MAML1) gene, homologue of the Drosophila mastermind, plays a role in coordinating the aforementioned signaling pathways, yet its role during cortical development remains largely unknown. Here we show that ectopic expression of dominant-negative MAML (dnMAML) causes exuberant neuronal production in the mouse cortex without disrupting neuronal migration. Comparing the transcriptional consequences of dnMAML and Neurog2 ectopic expression revealed a complex genetic network controlling the balance of progenitor expansion versus neuronal production. Manipulation of MAML and Neurog2 in cultured human cerebral stem cells exposed interactions with the same set of signaling pathways. Thus, our data suggest that evolutionary changes that affect the timing, tempo, and density of successive neuronal layers of the small lissencephalic rodent and large convoluted primate cerebral cortex depend on similar molecular mechanisms that act from the earliest developmental stages.


Assuntos
Córtex Cerebral/fisiologia , Proteínas de Ligação a DNA/fisiologia , Redes Reguladoras de Genes/fisiologia , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Feminino , Feto , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais , Proteínas Nucleares/genética , Gravidez , Transdução de Sinais/genética , Fatores de Transcrição/genética
6.
Protein Cell ; 15(1): 21-35, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300483

RESUMO

The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.


Assuntos
Células Ependimogliais , Proteínas Hedgehog , Animais , Camundongos , Humanos , Células Ependimogliais/metabolismo , Proteínas Hedgehog/metabolismo , Furões/metabolismo , Córtex Cerebral , Neurogênese , Mamíferos/metabolismo , Neuroglia/metabolismo , Proteína Morfogenética Óssea 7/metabolismo
7.
Neurosci Bull ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023844

RESUMO

Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.

8.
J Comp Neurol ; 532(7): e25652, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962882

RESUMO

Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.


Assuntos
Axônios , Neocórtex , Vias Neurais , Tálamo , Animais , Tálamo/citologia , Tálamo/anatomia & histologia , Neocórtex/citologia , Neocórtex/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/anatomia & histologia , Axônios/fisiologia , Mamíferos/anatomia & histologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Especificidade da Espécie
9.
Front Neurosci ; 16: 844410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422684

RESUMO

Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit-Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.

10.
Front Neurosci ; 16: 876406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495046

RESUMO

Visualizing the process of neural circuit formation during neurogenesis, using genetically modified animals or somatic transgenesis of exogenous plasmids, has become a key to decipher cortical development and evolution. In contrast to the establishment of transgenic animals, the designing and preparation of genes of interest into plasmids are simple and easy, dispensing with time-consuming germline modifications. These advantages have led to neuron labeling based on somatic transgenesis. In particular, mammalian expression plasmid, CRISPR-Cas9, and DNA transposon systems, have become widely used for neuronal visualization and functional analysis related to lineage labeling during cortical development. In this review, we discuss the advantages and limitations of these recently developed techniques.

11.
Dev Neurobiol ; 81(5): 608-622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773072

RESUMO

Recent advances in methods for making cerebral organoids have opened a window of opportunity to directly study human brain development and disease, countering limitations inherent in non-human-based approaches. Whether freely patterned, guided into a region-specific fate or fused into assembloids, organoids have successfully recapitulated key features of in vivo neurodevelopment, allowing its examination from early to late stages. Although organoids have enormous potential, their effective use relies on understanding the extent of their limitations in accurately reproducing specific processes and components in the developing human brain. Here we review the potential of cerebral organoids to model and study human brain development and evolution and discuss the progress and current challenges in their use for reproducing specific human neurodevelopmental processes.


Assuntos
Encéfalo , Organoides , Humanos
12.
J Comp Neurol ; 529(14): 3429-3452, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34180538

RESUMO

We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/química , Pan troglodytes/fisiologia , Substância Branca/fisiologia , Animais , Química Encefálica , Calbindina 2/metabolismo , Calbindinas/metabolismo , Contagem de Células , Córtex Cerebral/química , Córtex Cerebral/citologia , Feminino , Imuno-Histoquímica , Modelos Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Parvalbuminas/metabolismo , Substância Branca/química , Substância Branca/citologia
13.
J Comp Neurol ; 529(16): 3676-3708, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34259349

RESUMO

In the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.1, 10.8, and 37.7 million WMICs within the infracortical white matter of the galago, squirrel monkey, and crested macaque, respectively. The total numbers of WMICs form a distinct negative allometric relationship with brain mass and white matter volume when examined in a larger sample of primates where similar measures have been obtained. In all three primates studied, the highest densities of WMICs were in the white matter of the frontal lobe, with the occipital lobe having the lowest. Immunostaining revealed significant subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS) and calretinin, with very few WMICs containing parvalbumin, and none containing calbindin. The nNOS and calretinin immunopositive WMICs represent approximately 21% of the total WMIC population; however, variances in the proportions of these neurochemical phenotypes were noted. Our results indicate that both the squirrel monkey and crested macaque might be informative animal models for the study of WMICs in neurodegenerative and psychiatric disorders in humans.


Assuntos
Química Encefálica/fisiologia , Encéfalo/citologia , Galagidae/fisiologia , Macaca/fisiologia , Neurônios/ultraestrutura , Saimiri/fisiologia , Substância Branca/citologia , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Contagem de Células , Lobo Frontal/citologia , Lobo Frontal/ultraestrutura , Imuno-Histoquímica , Masculino , Neurônios/química , Óxido Nítrico Sintase Tipo I/metabolismo , Lobo Occipital/citologia , Lobo Occipital/ultraestrutura , Parvalbuminas/metabolismo , Especificidade da Espécie , Substância Branca/química
14.
J Comp Neurol ; 528(17): 3023-3038, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32103488

RESUMO

A large population of infracortical white matter neurons, or white matter interstitial cells (WMICs), are found within the subcortical white matter of the mammalian telencephalon. We examined WMICs in three species of megachiropterans, Megaloglossus woermanni, Casinycteris argynnis, and Rousettus aegyptiacus, using immunohistochemical and stereological techniques. Immunostaining for neuronal nuclear marker (NeuN) revealed substantial numbers of WMICs in each species-M. woermanni 124,496 WMICs, C. argynnis 138,458 WMICs, and the larger brained R. aegyptiacus having an estimated WMIC population of 360,503. To examine the range of inhibitory neurochemical types we used antibodies against parvalbumin, calbindin, calretinin, and neural nitric oxide synthase (nNOS). The calbindin and nNOS immunostained neurons were the most commonly observed, while those immunoreactive for calretinin and parvalbumin were sparse. The proportion of WMICs exhibiting inhibitory neurochemical profiles was ~26%, similar to that observed in previously studied primates. While for the most part the WMIC population in the megachiropterans studied was similar to that observed in other mammals, the one feature that differed was the high proportion of WMICs immunoreactive to calbindin, whereas in primates (macaque monkey, lar gibbon and human) the highest proportion of inhibitory WMICs contain calretinin. Interestingly, there appears to be an allometric scaling of WMIC numbers with brain mass. Further quantitative comparative work across more mammalian species will reveal the developmental and evolutionary trends associated with this infrequently studied neuronal population.


Assuntos
Química Encefálica , Encéfalo/citologia , Neurônios/química , Substância Branca/química , Substância Branca/citologia , Animais , Encéfalo/fisiologia , Química Encefálica/fisiologia , Contagem de Células/métodos , Tamanho Celular , Quirópteros , Masculino , Neurônios/fisiologia , Especificidade da Espécie , Substância Branca/fisiologia
15.
J Comp Neurol ; 527(8): 1293-1314, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632160

RESUMO

The present study describes the ipsilateral and contralateral corticocortical and corticothalamic connectivity of the occipital visual areas 17, 18, 19, and 21 in the ferret using standard anatomical tract-tracing methods. In line with previous studies of mammalian visual cortex connectivity, substantially more anterograde and retrograde label was present in the hemisphere ipsilateral to the injection site compared to the contralateral hemisphere. Ipsilateral reciprocal connectivity was the strongest within the occipital visual areas, while weaker connectivity strength was observed in the temporal, suprasylvian, and parietal visual areas. Callosal connectivity tended to be strongest in the homotopic cortical areas, and revealed a similar areal distribution to that observed in the ipsilateral hemisphere, although often less widespread across cortical areas. Ipsilateral reciprocal connectivity was observed throughout the visual nuclei of the dorsal thalamus, with no contralateral connections to the visual thalamus being observed. The current study, along with previous studies of connectivity in the cat, identified the posteromedial lateral suprasylvian visual area (PMLS) as a distinct network hub external to the occipital visual areas in carnivores, implicating PMLS as a potential gateway to the parietal cortex for dorsal stream processing. These data will also contribute to a macro connectome database of the ferret brain, providing essential data for connectomics analyses and cross-species analyses of connectomes and brain connectivity matrices, as well as providing data relevant to additional studies of cortical connectivity across mammals and the evolution of cortical connectivity variation.


Assuntos
Furões/anatomia & histologia , Tálamo/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais
16.
J Comp Neurol ; 527(8): 1333-1347, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632165

RESUMO

The present study describes the ipsilateral and contralateral corticocortical and corticothalamic connectivity of the temporal visual areas 20a and 20b in the ferret using standard anatomical tract-tracing methods. The two temporal visual areas are strongly interconnected, but area 20a is primarily connected to the occipital visual areas, whereas area 20b maintains more widespread connections with the occipital, parietal and suprasylvian visual areas and the secondary auditory cortex. The callosal connectivity, although homotopic, consists mainly of very weak anterograde labeling which was more widespread in area 20a than area 20b. Although areas 20a and 20b are well connected with the visual dorsal thalamus, the injection into area 20a resulted in more anterograde label, whereas more retrograde label was observed in the visual thalamus following the injection into area 20b. Most interestingly, comparisons to previous connectional studies of cat areas 20a and 20b reveal a common pattern of connectivity of the temporal visual cortex in carnivores, where the posterior parietal cortex and the central temporal region (PMLS) provide network points required for dorsal and ventral stream interaction enroute to integration in the prefrontal cortex. This pattern of network connectivity is not dissimilar to that observed in primates, which highlights the ferret as a useful animal model to understand visual sensory integration between the dorsal and ventral streams. The data generated will also contribute to a connectomics database, to facilitate cross species analysis of brain connectomes and wiring principles of the brain.


Assuntos
Furões/anatomia & histologia , Lobo Temporal/anatomia & histologia , Tálamo/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais
17.
J Comp Neurol ; 527(8): 1315-1332, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632607

RESUMO

The present study describes the ipsilateral and contralateral cortico-cortical and cortico-thalamic connectivity of the parietal visual areas, posterior parietal caudal cortical area (PPc) and posterior parietal rostral cortical area (PPr), in the ferret using standard anatomical tract-tracing methods. The two divisions of posterior parietal cortex of the ferret are strongly interconnected, however area PPc shows stronger connectivity with the occipital and suprasylvian visual cortex, while area PPr shows stronger connectivity with the somatomotor cortex, reflecting the functional specificity of these two areas. This pattern of connectivity is mirrored in the contralateral callosal connections. In addition, PPc and PPr are connected with the visual and somatomotor nuclei of the dorsal thalamus. Numerous connectional similarities exist between the posterior parietal cortex of the ferret (PPc and PPr) and the cat (area 7 and 5), indicative of the homology of these areas within the Carnivora. These findings highlight the existence of a frontoparietal network as a shared feature of the organization of parietal cortex across Euarchontoglires and Laurasiatherians, with the degree of expression varying in relation to the expansion and areal complexity of the posterior parietal cortex. This observation indicates that the ferret is a potentially valuable experimental model animal for understanding the evolution and function of the posterior parietal cortex and the frontoparietal network across mammals. The data generated will also contribute to a connectomics database, to further cross-species analyses of connectomes and illuminate wiring principles of cortical connectivity across mammals.


Assuntos
Furões/anatomia & histologia , Lobo Parietal/anatomia & histologia , Tálamo/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais
18.
Cell Rep ; 29(3): 645-658.e5, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618633

RESUMO

Changes in transcriptional regulation through cis-regulatory elements are thought to drive brain evolution. However, how this impacts the identity of primate cortical neurons is still unresolved. Here, we show that primate-specific cis-regulatory sequences upstream of the Dbx1 gene promote human-like expression in the mouse embryonic cerebral cortex, and this imparts cell identity. Indeed, while Dbx1 is expressed in highly restricted cortical progenitors in the mouse ventral pallium, it is maintained in neurons in primates. Phenocopy of the primate-like Dbx1 expression in mouse cortical progenitors induces ectopic Cajal-Retzius and subplate (SP) neurons, which are transient populations playing crucial roles in cortical development. A conditional expression solely in neurons uncouples mitotic and postmitotic activities of Dbx1 and exclusively promotes a SP-like fate. Our results highlight how transcriptional changes of a single fate determinant in postmitotic cells may contribute to the expansion of neuronal diversity during cortical evolution.


Assuntos
Evolução Biológica , Córtex Cerebral/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Embrião de Mamíferos/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Humanos , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Gravidez , Proteínas com Domínio T/metabolismo
19.
J Comp Neurol ; 527(10): 1633-1653, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30378128

RESUMO

We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), in the brain of a lesser ape, the lar gibbon. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed a global estimate of ~67.5 million WMICs within the infracortical white matter of the gibbon brain, indicating that the WMICs are a numerically significant population, ~2.5% of the total cortical gray matter neurons that would be estimated for a primate brain the mass of that of the lar gibbon. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, ~7 million in number, with both small and large soma volumes), calretinin (~8.6 million in number, all of similar soma volume), very few WMICs containing parvalbumin, and no calbindin-immunopositive neurons. These nNOS, calretinin, and parvalbumin immunopositive WMICs, presumably all inhibitory neurons, represent ~23.1% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.


Assuntos
Encéfalo/citologia , Hylobates/anatomia & histologia , Neurônios/citologia , Substância Branca/citologia , Animais , Encéfalo/metabolismo , Masculino , Neurônios/metabolismo , Substância Branca/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA