Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; : e202400242, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777792

RESUMO

Accumulating evidence suggests that G protein-coupled receptors (GPCRs) can exist and function in homodimer and heterodimer forms. The adenosine A1 receptor (A1R) has been shown to form both homodimers and heterodimers, but there is a lack of chemical tools to study these dimeric receptor populations. This work describes the synthesis and pharmacological evaluation of a novel class of bivalent GPCR chemical tools, where each ligand moiety of the bivalent compound contains a sulfonyl fluoride covalent warhead designed to be capable of simultaneously reacting with each A1R of an A1R homodimer. The novel compounds were characterised using radioligand binding assays, including washout assays, and functionally in cAMP assays. The bivalent dicovalent compounds were competitive A1R antagonists and showed evidence of covalent binding and simultaneous binding across an A1R homodimer. Greater selectivity for A1R over the adenosine A3 receptor was observed for bivalent dicovalent over the equivalent monovalent compounds, indicating subtype selectivity can be achieved with dual occupation by a bivalent dicovalent ligand.

2.
Bioorg Med Chem Lett ; 102: 129677, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408510

RESUMO

Stimulator of interferon genes (STING), a homodimeric membrane receptor localized in the endoplasmic reticulum, plays a pivotal role in signaling innate immune responses. Inhibitors and proteolysis-targeting chimeras (PROTACs) targeting STING are promising compounds for addressing autoinflammatory and autoimmune disorders. In this study, we used a minimal covalent handle recently developed as the ligand portion of an E3 ligase. The engineered STING degrader with a low molecular weight compound covalently binds to STING and E3 ligase. Degrader 2 showed sustained STING degradation activity at lower concentrations (3 µM, 48 h, about 75 % degradation) compared to a reported STING PROTAC, SP23. This discovery holds significance for its potential in treating autoinflammatory and autoimmune diseases, offering promising avenues for developing more efficacious STING-targeted therapies.


Assuntos
Transdução de Sinais , Ubiquitina-Proteína Ligases , Proteólise , Ligantes , Ubiquitina-Proteína Ligases/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38944414

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) belongs to nuclear receptor superfamily and is involved in inflammatory process. Previously, we synthesized the ligands of PPARγ which possess the hybrid structure of a food-derived cinnamic acid derivative (CA) and GW9662, an irreversible PPARγ antagonist. These ligands activate the transcription of PPARγ through the covalent bond formation with the Cys285 residue of PPARγ, whereas their anti-inflammatory effect has not been examined yet. Here, we show the anti-inflammatory effect of the covalent PPARγ ligands in RAW264 cells, murine macrophage-like cells. GW9662 suppressed the production of nitric oxide (NO) stimulated by lipopolysaccharide and exerted a synergistic effect in combination with CA. The compounds bearing their hybrid structure dramatically inhibited NO production and transcription of proinflammatory cytokines. A comparison study suggested that 2-chloro-5-nitrobenzoyl group of the ligands is important for anti-inflammation. Furthermore, we synthesized an alkyne-tagged analogue which become an activity-based probe for future mechanistic study.

4.
Angew Chem Int Ed Engl ; 63(14): e202316496, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348945

RESUMO

Brachyury is an oncogenic transcription factor whose overexpression drives chordoma growth. The downmodulation of brachyury in chordoma cells has demonstrated therapeutic potential, however, as a transcription factor it is classically deemed "undruggable". Given that direct pharmacological intervention against brachyury has proven difficult, attempts at intervention have instead targeted upstream kinases. Recently, afatinib, an FDA-approved kinase inhibitor, has been shown to modulate brachyury levels in multiple chordoma cell lines. Herein, we use afatinib as a lead to undertake a structure-based drug design approach, aided by mass-spectrometry and X-ray crystallography, to develop DHC-156, a small molecule that more selectively binds brachyury and downmodulates it as potently as afatinib. We eliminated kinase-inhibition from this novel scaffold while demonstrating that DHC-156 induces the post-translational downmodulation of brachyury that results in an irreversible impairment of chordoma tumor cell growth. In doing so, we demonstrate the feasibility of direct brachyury modulation, which may further be developed into more potent tool compounds and therapies.


Assuntos
Cordoma , Proteínas Fetais , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Cordoma/tratamento farmacológico , Cordoma/metabolismo , Cordoma/patologia , Afatinib , Proteínas com Domínio T/metabolismo
5.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069799

RESUMO

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
6.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985837

RESUMO

Boron containing compounds (BCCs) aroused increasing interest in the scientific community due to their wide application as drugs in various fields. In order to design new compounds hopefully endowed with pharmacological activity and also investigate their conformational behavior, the support of computational studies is crucial. Nevertheless, the suitable molecular mechanics parameterization and the force fields needed to perform these simulations are not completely available for this class of molecules. In this paper, Amber force field parameters for phenyl-, benzyl-, benzylamino-, and methylamino-boronates, a group of boron-containing compounds involved in different branches of the medicinal chemistry, were created. The robustness of the obtained data was confirmed through molecular dynamics simulations on ligand/ß-lactamases covalent complexes. The ligand torsional angles, populated over the trajectory frames, were confirmed by values found in the ligand geometries, located through optimizations at the DFT/B3LYP/6-31g(d) level, using water as a solvent. In summary, this study successfully provided a library of parameters, opening the possibility to perform molecular dynamics simulations of this class of boron-containing compounds.

7.
Bioorg Med Chem ; 61: 116720, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35334449

RESUMO

A broadly applicable synthesis of peptides incorporating mixed disulfides between cysteine and homocysteine and cysteamine was developed. The method was established using pharmacologically relevant G protein-coupled receptor (GPCR) ligands including the µ-receptor agonist Dmt-DALDA and extended to the orexin derivative Oxa(17-33) and NT(8-13), the C-terminal hexapeptide of neurotensin. The newly developed NT(8-13) analog 6b incorporating an S-functionalized homocysteine revealed covalent binding of the neurotensin receptor 1 (NTSR1) in a radioligand depletion study.


Assuntos
Dissulfetos , Neurotensina , Homocisteína , Peptídeos/farmacologia , Receptores de Neurotensina/agonistas
8.
Bioorg Med Chem ; 27(13): 2959-2971, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151791

RESUMO

The selective covalent tethering of ligands to a specific GPCR binding site has attracted considerable interest in structural biology, molecular pharmacology and drug design. We recently reported on a covalently binding noradrenaline analog (FAUC37) facilitating crystallization of the ß2-adrenergic receptor (ß2ARH2.64C) in an active state. We herein present the stereospecific synthesis of covalently binding disulfide ligands based on the pharmacophores of adrenergic ß1- and ß2 receptor antagonists. Radioligand depletion experiments revealed that the disulfide-functionalized ligands were able to rapidly form a covalent bond with a specific cysteine residue of the receptor mutants ß1ARI2.64C and ß2ARH2.64C. The propranolol derivative (S)-1a induced nearly complete irreversible blockage of the ß2ARH2.64C within 30 min incubation. The CGP20712A-based ligand (S)-4 showed efficient covalent blocking of the ß2ARH2.64C at very low concentrations. The analog (S)-5a revealed extraordinary covalent cross-linking at the ß1ARI2.64C and ß2ARH2.64C mutant while retaining a 41-fold selectivity for the ß1AR wild type over ß2AR. These compounds may serve as valuable molecular tools for studying ß1/ß2 subtype selectivity or investigations on GPCR trafficking and dimerization.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/síntese química , Antagonistas de Receptores Adrenérgicos beta 2/síntese química , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 2/química
9.
Bioorg Med Chem ; 25(19): 5084-5094, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666858

RESUMO

The dopamine D2 receptor (D2R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D2R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D2R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments.


Assuntos
Antagonistas dos Receptores de Dopamina D2/química , Antagonistas dos Receptores de Dopamina D2/farmacologia , Haloperidol/análogos & derivados , Haloperidol/farmacologia , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Antipsicóticos/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação Puntual , Ligação Proteica , Ensaio Radioligante , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Esquizofrenia/tratamento farmacológico
10.
Bioorg Med Chem ; 25(24): 6492-6500, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29097031

RESUMO

Site-specific labeling is an important methodology to elucidate the biological function of a target protein. Here, we report a strategy for site-specific chemical labeling, termed the "on-site reaction". We designed and readily synthesized a bifunctional ligand possessing two reaction sites, an enone and an azide moiety. This strategy involves an on-site conjugate addition reaction with protein followed by a Hüisgen cycloaddition reaction. We demonstrate this strategy by using fluorescein as a probe and peroxisome proliferator activated receptor γ (PPARγ) as a target protein. The reactions were evaluated by ESI-mass analysis and the binding site and modes of binding were revealed by X-ray crystallization analysis. The proposed methodology can easily convert a covalent ligand into chemical tool for protein functional analysis and the identification of drug targets.


Assuntos
Fluoresceína/farmacologia , Corantes Fluorescentes/farmacologia , PPAR gama/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Fluoresceína/química , Corantes Fluorescentes/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Mol Biol ; 436(16): 168650, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866091

RESUMO

Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.


Assuntos
Proteína gp41 do Envelope de HIV , HIV-1 , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
12.
Elife ; 122024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38259172

RESUMO

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Translocação Genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Mutação
13.
Trends Pharmacol Sci ; 44(7): 474-488, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263826

RESUMO

The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.


Assuntos
Proteínas , Bibliotecas de Moléculas Pequenas , Humanos , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Proteínas/química , Ligantes
14.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300789

RESUMO

The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.


Assuntos
Cisteína , Via de Sinalização Hippo , Humanos , Animais , Camundongos , Projetos de Pesquisa , Ativação Transcricional , Transplante Heterólogo
15.
Cell Chem Biol ; 28(4): 559-566.e15, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33513350

RESUMO

The translation of functionally active natural products into fully synthetic small-molecule mimetics has remained an important process in medicinal chemistry. We recently discovered that the terpene natural product nimbolide can be utilized as a covalent recruiter of the E3 ubiquitin ligase RNF114 for use in targeted protein degradation-a powerful therapeutic modality within modern-day drug discovery. Using activity-based protein profiling-enabled covalent ligand-screening approaches, here we report the discovery of fully synthetic RNF114-based recruiter molecules that can also be exploited for PROTAC applications, and demonstrate their utility in degrading therapeutically relevant targets, such as BRD4 and BCR-ABL, in cells. The identification of simple and easily manipulated drug-like scaffolds that can mimic the function of a complex natural product is beneficial in further expanding the toolbox of E3 ligase recruiters, an area of great importance in drug discovery and chemical biology.


Assuntos
Produtos Biológicos/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Produtos Biológicos/química , Humanos , Estrutura Molecular , Ubiquitinação
16.
Cell Chem Biol ; 28(1): 4-13.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966806

RESUMO

MYC is a major oncogenic transcriptional driver of most human cancers that has remained intractable to direct targeting because much of MYC is intrinsically disordered. Here, we have performed a cysteine-reactive covalent ligand screen to identify compounds that could disrupt the binding of MYC to its DNA consensus sequence in vitro and also impair MYC transcriptional activity in situ in cells. We have identified a covalent ligand, EN4, that targets cysteine 171 of MYC within a predicted intrinsically disordered region of the protein. We show that EN4 directly targets MYC in cells, reduces MYC and MAX thermal stability, inhibits MYC transcriptional activity, downregulates multiple MYC transcriptional targets, and impairs tumorigenesis. We also show initial structure-activity relationships of EN4 and identify compounds that show improved potency. Overall, we identify a unique ligandable site within an intrinsically disordered region of MYC that leads to inhibition of MYC transcriptional activity.


Assuntos
Cisteína/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Células Cultivadas , Cisteína/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
17.
Biochem Pharmacol ; 180: 114144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653590

RESUMO

Partial agonists for G protein-coupled receptors (GPCRs) provide opportunities for novel pharmacotherapies with enhanced on-target safety compared to full agonists. For the human adenosine A1 receptor (hA1AR) this has led to the discovery of capadenoson, which has been in phase IIa clinical trials for heart failure. Accordingly, the design and profiling of novel hA1AR partial agonists has become an important research focus. In this study, we report on LUF7746, a capadenoson derivative bearing an electrophilic fluorosulfonyl moiety, as an irreversibly binding hA1AR modulator. Meanwhile, a nonreactive ligand bearing a methylsulfonyl moiety, LUF7747, was designed as a control probe in our study. In a radioligand binding assay, LUF7746's apparent affinity increased to nanomolar range with longer pre-incubation time, suggesting an increasing level of covalent binding over time. Moreover, compared to the reference full agonist CPA, LUF7746 was a partial agonist in a hA1AR-mediated G protein activation assay and resistant to blockade with an antagonist/inverse agonist. An in silico structure-based docking study combined with site-directed mutagenesis of the hA1AR demonstrated that amino acid Y2717.36 was the primary anchor point for the covalent interaction. Additionally, a label-free whole-cell assay was set up to identify LUF7746's irreversible activation of an A1 receptor-mediated cell morphological response. These results led us to conclude that LUF7746 is a novel covalent hA1AR partial agonist and a valuable chemical probe for further mapping the receptor activation process. It may also serve as a prototype for a therapeutic approach in which a covalent partial agonist may cause less on-target side effects, conferring enhanced safety compared to a full agonist.


Assuntos
Agonistas do Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Desenho de Fármacos , Agonismo Parcial de Drogas , Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/química , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Ensaio Radioligante/métodos , Receptor A1 de Adenosina/química
18.
Cell Chem Biol ; 24(11): 1368-1376.e4, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28919038

RESUMO

Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy.


Assuntos
Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/química , Feminino , Humanos , Ligantes , Células MCF-7 , Proteína Fosfatase 2/química , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vitanolídeos/química , Vitanolídeos/farmacologia
19.
J Mol Model ; 24(1): 11, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234892

RESUMO

During the last decades, the application of hybrid quantum mechanical/molecular mechanical (QM/MM) methods has been extended to the field of drug design. In principle, the approximate QM/MM approach offers a more complete description of drug-receptor non-covalent interactions. This is especially true when charge or proton transfer, chelation of metal ions or strong polarization of ligand and protein or surface chemical groups are involved. The aim of this work was to assess the accuracy of calculated non-covalent ligand-protein interaction energies ([Formula: see text]) obtained by the hybrid QM/MM approach employed in QSite/Jaguar of Schrödinger's Small-Molecule Drug Discovery Suite on a set of small-molecule model systems when compared to rigorous QM calculations. The QM/MM approach was used at the density functional theory (DFT) level of theory with 6-31G* basis set, hybrid B3LYP functional and OPLS-2005 force field (DFT-B3LYP/6-31G*//OPLS-2005), a popular combination frequently used in studies on larger and complex biological systems such as drug-receptor complexes. In this work, we did not attempt to compute the most precise interaction energies of the model systems. We rather tried to assess the performance of the approximate QM/MM vs. full QM approach at the same computationally accessible level. For effective use of the QM/MM approach it is essential to select an appropriate QM region of the studied systems. To aid the selection of specific protein residues or functional groups to be included in the QM region, we evaluated the effect of its size, composition and symmetry on the accuracy of the QM/MM calculated [Formula: see text]. This was performed by means of a set of model clusters with well-defined configurations, which mimic the basic types of non-covalent interactions in proteins. Based on these systematic quantitative comparisons, recommendations for the addition of chemical groups or protein residues into the QM region are proposed for the popular DFT-B3LYP/6-31G*//OPLS-2005 QM/MM approach, leading to a more realistic description of ligand-protein interactions. These guidelines can have a significant bearing on computational drug or material research employing hybrid QM/MM methods by providing an estimate of the accuracy that can be expected from QM/MM studies. Graphical abstract An approximate hybrid QM/MM approach at the DFT-B3LYP/6-31G*//OPLS-2005 level was systematically assessed for the accuracy of description of non-covalent interactions on a series of six small-molecule model systems using the QSite and Jaguar modules of Schrödinger. Guidelines for rational selection of receptor residues or function groups to be included in the QM region around the ligand were proposed based on the achieved accuracy of computed ligand-protein interaction energies obtained by QM/MM vs. the full QM approach.


Assuntos
Biologia Computacional/métodos , Desenho de Fármacos , Modelos Moleculares , Proteínas/química , Ligantes , Proteínas/metabolismo , Teoria Quântica
20.
J Am Soc Mass Spectrom ; 27(8): 1328-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27245456

RESUMO

Protein modifications, whether chemically induced or post-translational (PTMs), play an essential role for the biological activity of proteins. Understanding biological processes and alterations thereof will rely on the quantification of these modifications on individual residues. Here we present SSPaQ, a subtractive method for the parallel quantification of the extent of modification at each possible site of a protein. The method combines uniform isotopic labeling and proteolysis with MS, followed by a segmentation approach, a powerful tool to refine the quantification of the degree of modification of a peptide to a segment containing a single modifiable amino acid. The strength of this strategy resides in: (1) quantification of all modifiable sites in a protein without prior knowledge of the type(s) of modified residues; (2) insensitivity to changes in the solubility and ionization efficiency of peptides upon modification; and (3) detection of missed cleavages caused by the modification for mitigation. The SSPaQ method was applied to quantify modifications resulting from the interaction of human phosphatidyl ethanolamine binding protein 1 (hPEBP1), a metastasis suppressor gene product, with locostatin, a covalent ligand and antimigratory compound with demonstrated activity towards hPEBP1. Locostatin is shown to react with several residues of the protein. SSPaQ can more generally be applied to induced modification in the context of drugs that covalently bind their target protein. With an alternate front-end protocol, it could also be applied to the quantification of protein PTMs, provided a removal tool is available for that PTM. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA