Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Q Rev Biophys ; 57: e7, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715547

RESUMO

Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.


Assuntos
Proteínas Motores Moleculares , Animais , Humanos , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Desdobramento de Proteína , Enzimas/metabolismo , Metabolismo Energético
2.
3D Print Addit Manuf ; 11(1): 40-49, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389665

RESUMO

Selective laser melting of Ti-48Al-2Cr-2Nb usually ends up with serious cracking. The cracking mechanism, however, remains elusive. In this study, both bulk samples and samples containing only several layers were prepared and investigated. It is shown that a freshly built layer is dominated by single α2 phase. γ started to form from α2 during subsequent thermal cycling due to reheating effects and its volume fraction increased continuously with increased thermal cycles. The γ phase contains higher geometrically necessary dislocation (GND) density than α2. This could be due to its relatively lower hardness and higher thermal expansion coefficient, which made it easier to deform under stresses. With higher GND and thus probably higher distortion energy, the γ experienced more extensive recrystallization than α2 during reheating. Cracks are more liable to initiate from the interior of α2 or the γ/α2 interfaces, which could be due to incompatible deformation between the two phases.

3.
Materials (Basel) ; 17(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39203090

RESUMO

Laser cladding provides advanced surface treatment capabilities for enhancing the properties of components. However, its effectiveness is often challenged by the formation of hot cracks during the cladding process. This study focuses on the formation mechanism and inhibition of hot cracks in a novel cobalt-based alloy (K688) coating applied to 304LN stainless steel via laser cladding. The results indicate that hot crack formation is influenced by liquid film stability, the stress concentration, and precipitation phases. Most hot cracks were found at 25°-45° high-angle grain boundaries (HAGBs) due to the high energy of these grain boundaries, which stabilize the liquid film. A flat-top beam, compared to a Gaussian beam, creates a melt pool with a lower temperature gradient and more mitigatory fluid flow, reducing thermal stresses within the coating and the fraction of crack-sensitive, high-angle grain boundaries (S-HAGBs). Finally, crack formation was significantly inhibited by utilizing a flat-top laser beam to optimize the process parameters. These findings provide a technical foundation for achieving high-quality laser cladding of dissimilar materials, offering insights into optimizing process parameters to prevent hot crack formation.

4.
Materials (Basel) ; 16(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834563

RESUMO

Laser welding, known for its distinctive advantages, has become significantly valuable in the automotive industry. However, in this context, the frequent occurrence of hot cracking necessitates further investigation into this phenomenon. This research aims to understand the hot-cracking mechanism in aluminum alloy (AA) 6061, welded using a laser beam in a lap joint setup. We used an array of material characterization methods to study the effects of processing parameters on the cracking susceptibility and to elucidate the hot-cracking mechanism. A laser power of 2000 W generated large hot cracks crossing the whole weld zone for all welding speed conditions. Our findings suggest that using a heat input of 30 J/mm significantly mitigates the likelihood of hot cracking. Furthermore, we observed that the concentrations of the alloying elements in the cracked region markedly surpassed the tolerable limits of some elements (silicon: 2.3 times, chromium: 8.1 times, and iron: 2.7 times, on average) in AA6061. The hot-cracking mechanism shows that the crack initiates from the weld root at the interface between the two welded plates and then extends along the columnar dendrite growth direction. Once the crack reaches the central region of the fusion zone, it veers upward, following the cooling direction in this area. Our comprehensive investigation indicates that the onset and propagation of hot cracks are influenced by a combination of factors, such as stress, strain, and the concentration of alloying elements within the intergranular region.

5.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556726

RESUMO

Different fractures exist widely in rock mass and play a significant role in their deformation and strength properties. Crack rocks are often subjected to dynamic disturbances, which exist in many fields of geotechnical engineering practices. In this study, dynamic compression tests were carried out on rock specimens with parallel cracks using a split hopkinson pressure bar apparatus. Tests determined the effects of strain rate and crack intensity on dynamic responses, including progressive failure behavior, rock fragmentation characteristics, and energy dissipation. Based on the crack classification method, tensile-shear mixed cracking dominates the failure of rock specimens under the action of impact loading. Increasing the flaw inclination angle from 0°-90° changes the predominant cracking mechanism from tensile cracking to mixed tensile-shear cracking. The larger the loading rate, the more obvious the cracking mechanism, which indicates that the loading rate can promote the cracking failure of rock specimens. The fragmentation analysis shows that rock samples are significantly broken at higher loading rates, and higher loading rates lead to smaller average fragment sizes; therefore, the larger the fractal dimension is, the more uniform the broken fragments of smaller sizes are. Energy utilization efficiency decreases while energy dissipation density increases with increasing strain rate. For a given loading rate, the energy absorption density and energy utilization efficiency first decrease and then increase with increasing flaw inclination, while the rockburst tendency of rock decreases initially and then increases. We also find that the elastic-plastic strain energy density increases linearly with the total input energy density, confirming that the linear energy property of granite has not been altered by the loading rate. According to this inherent property, the peak elastic strain energy of the crack specimen can be calculated accurately. On this basis, the rockburst proneness of granite can be determined quantitatively using the residual elastic energy index, and the result is consistent with the intensity of actual rockburst for the specimens.

6.
Materials (Basel) ; 15(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160717

RESUMO

The CRTS I type double-block ballastless track (CRTS I TDBBT) has the advantages of convenient construction and low cost, but it has low crack resistance and the temperature field distribution of the railway on the bridge is uneven and frequently changes, so it is necessary to study the mechanical properties of the CRTS I TDBBT under the load of a temperature field. The temperature field model of the CRTS I TDBBT on the bridge is established by finite element software, the real-time temperature field of the track bed slab is brought into the coupled model as a load, and the variation laws of the temperature stress of the CRTS I TDBBT under different schemes are compared. The temperature gradient in the CRTS I TDBBT track bed slab has the largest fluctuation range, and the positive and negative temperature gradient range can reach 93.34 °C. For the temperature longitudinal stress around the sleeper block of the track bed slab, the edge is the largest; the temperature longitudinal stress is reduced by at most 5.27% after the anti-cracking diagonal bars are added. When the expansion joint is added, the temperature stress can be reduced by up to 80.29%. The fluctuation range of the temperature gradient of the track bed is basically consistent with the fluctuation range of the local air temperature. The huge temperature difference leads to the occurrence of cracks in the track structure, and cracks are more likely to occur at the corners of the sleeper block. The addition of both anti-crack diagonal bars and expansion joints has an anti-crack effect, but the effect of adding expansion joints is better.

7.
Materials (Basel) ; 14(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576501

RESUMO

Semi-flexible pavement (SFP) is widely used in recent years because of its good rutting resistance, but it is easy to crack under traffic loads. A large number of studies are aimed at improving its crack resistance. However, the understanding of its fatigue resistance and fatigue-cracking mechanism is limited. Therefore, the semi-circular bending (SCB) fatigue test is used to evaluate the fatigue resistance of the SFP mixture. SCB fatigue tests under different temperature values and stress ratio were used to characterize the fatigue life of the SFP mixture, and its laboratory fatigue prediction model was established. The distribution of various phases of the SFP mixture in the fracture surface was analyzed by digital image processing technology, and its fatigue cracking mechanism was analyzed. The results show that the SFP mixture has better fatigue resistance under low temperature and low stress ratio, while its fatigue resistance under other environmental and load conditions is worse than that of asphalt mixture. The main reason for the poor fatigue resistance of the SFP mixture is the poor deformation capacity and low strength of grouting materials. Furthermore, the performance difference between grouting material and the asphalt binder is large, which leads to the difference of fatigue cracking mechanism of the SFP mixture under different conditions. Under the fatigue load, the weak position of the SFP mixture at a low temperature is asphalt binder and its interface with other materials, while at medium and high temperatures, the weak position of the SFP mixture is inside the grouting material. The research provides a basis for the calculation of the service life of the SFP structure, provides a reference for the improvement direction of the SFP mixture composition and internal structure.

8.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899871

RESUMO

The IN738LC Ni-based superalloy strengthened by the coherent γ'-Ni3(Al,Ti) intermetallic compound is one of the most employed blade materials in gas turbine engines and IN738LC thin wall components without macro-cracks were fabricated by pulsed plasma arc additive manufacturing (PPAAM), which is more competitive when considering convenience and cost in comparison with other high-energy beam additive manufacturing technologies. The as-fabricated sample exhibited epitaxial growth columnar dendrites along the building direction with discrepant secondary arm spacing due to heat accumulation. A lot of fine γ' particles with an average size of 81 nm and MC carbides were observed in the interdendritic region. Elemental segregation and γ-γ' eutectic reaction were analyzed in detail and some MC carbides were confirmed in the reaction L + MC→γ + γ'. After standard heat treatment, bimodal distribution of γ' phases, including coarse γ' particles (385 nm, 42 vol.%) and fine γ' particles (42 nm, 25 vol.%), was observed. The mechanism of microstructural evolution, phase formation, as well as cracking mechanisms were discussed. Microhardness and tensile tests were carried out to investigate the mechanical performance. The results show that both the as-fabricated and heat-treated samples exhibited a higher tensile strength but a slightly lower ductility compared with cast parts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA