Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sud Med Ekspert ; 64(1): 21-23, 2021.
Artigo em Russo | MEDLINE | ID: mdl-33511829

RESUMO

The aim of the work is to establish the possibility of mathematical modeling of the injuries formation in the mobile and fixed spleen under shock impact to the region of the left middle axillary line of the chest. A spleen injury with a pinched and movable vascular pedicle was simulated, for which were created two models in three-dimensional virtual space - the spleen model and the rib-sternum segment model. Differences in the concentration and localization of stresses arising on the spleen were noted in cases of fixed and non-fixed vascular pedicle. It was found that under the same conditions of injury (place of application and direction of the injury, impact force), «critical¼ stresses that can lead to ruptures occur on the spleen, which has a fixed vascular pedicle.


Assuntos
Baço , Ferimentos não Penetrantes , Humanos , Ruptura , Baço/lesões , Tórax , Ferimentos não Penetrantes/etiologia
2.
Materials (Basel) ; 17(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274618

RESUMO

This study presents test results and deep discussion regarding measurements of the fracture toughness of new concrete composites based on ternary blended cements (TCs). A composition of the most commonly used mineral additive (i.e., fly ash (FA)) in combination with nano-silica (NS) has been proposed as a partial replacement of the ordinary Portland cement (OPC) binder. The novelty of this article is related to the fact that ordinary concretes with FA + NS additives are most often used in construction practice, and there is a decided lack of fracture toughness test results concerning these materials. Therefore, in order to fill this gap in the literature, an extensive evaluation of the fracture mechanic parameters of TC was carried out. Four series of concretes were created, one of which was the reference concrete (REF), and the remaining three were TCs. The effect of a constant content of 5% NS and various FA contents, such as 0, 15%, and 25% wt., as a partial replacement of cement was studied. The parameters of the linear and nonlinear fracture mechanics were analyzed in this study (i.e., the critical stress intensity factor (KIcS), critical crack tip opening displacement (CTODc), and critical unit work of failure (JIc)). In addition, the main mechanical parameters (i.e., the compressive strength (fcm) and splitting tensile strength (fctm)) were evaluated. Based on the studies, it was found that the addition of 5% NS without FA increased the strength and fracture parameters of the concrete by approximately 20%. On the other hand, supplementing the composition of the binder with 5% NS in combination with the 15% FA additive caused an increase in all mechanical parameters by approximately another 20%. However, an increase in the FA content in the concrete mix of another 10% caused a smaller increase in all analyzed factors (i.e., by approximately 10%) compared with a composite with the addition of the NS modifier only. In addition, from an ecological point of view, by utilizing fine waste FA particles combined with extremely fine particles of NS to produce ordinary concretes, the demand for OPC can be reduced, thereby lowering CO2 emissions. Hence, the findings of this research hold practical importance for the future application of such materials in the development of green concretes.

3.
Materials (Basel) ; 14(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885265

RESUMO

Borated stainless steel (BSS) specimens have a boron content of 1.86 wt%, and are prepared by hot isostatic pressing (HIP) conducted at different temperatures, ranging from 1000 to 1100 °C and a constant true strain rate (0.01, 0.1, 1 and 10 s-1). These tests, with observations and microstructural analysis, have achieved the hot deformation characteristics and mechanisms of BSS. In this research, the activation energy (Q) and Zener-Hollomon parameter (Z) were contrasted against the flow curves: Q = 442.35 kJ/mol. The critical conditions associated with the initiation of dynamic recrystallization (DRX) for BSS were precisely calculated based on the function between the strain hardening rate with the flow stress: at different temperatures from 1000 to 1100 °C: the critical stresses were 146.69-254.77 MPa and the critical strains were 0.022-0.044. The facts show that the boron-containing phase of BSS prevented the onset of DRX, despite the saturated boron in the austenite initiated DRX. The microstructural analysis showed that hot deformation promoted the generation of borides, which differed from the initial microstructure of HIP. The inhomogeneous distribution of elements in the boron-containing phase was caused by hot compression.

4.
Materials (Basel) ; 14(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435437

RESUMO

This paper presents the results of the fracture toughness of concretes containing two mineral additives. During the tests, the method of loading the specimens according to Mode I fracture was used. The research included an evaluation of mechanical parameters of concrete containing noncondensed silica fume (SF) in an amount of 10% and siliceous fly ash (FA) in the following amounts: 0%, 10% and 20%. The experiments were carried out on mature specimens, i.e., after 28 days of curing and specimens at an early age, i.e., after 3 and 7 days of curing. In the course of experiments, the effect of adding SF to the value of the critical stress intensity factor-KIcS in FA concretes in different periods of curing were evaluated. In addition, the basic strength parameters of concrete composites, i.e., compressive strength-fcm and splitting tensile strength-fctm, were measured. A novelty in the presented research is the evaluation of the fracture toughness of concretes with two mineral additives, assessed at an early age. During the tests, the structures of all composites and the nature of macroscopic crack propagation were also assessed. A modern and useful digital image correlation (DIC) technique was used to assess macroscopic cracks. Based on the conducted research, it was found the application of SF to FA concretes contributes to a significant increase in the fracture toughness of these materials at an early age. Moreover, on the basis of the obtained test results, it was found that the values of the critical stress intensity factor of analyzed concretes were convergent qualitatively with their strength parameters. It also has been demonstrated that in the first 28 days of concrete curing, the preferred solution is to replace cement with SF in the amount of 10% or to use a cement binder substitution with a combination of additives in proportions 10% SF + 10% FA. On the other hand, the composition of mineral additives in proportions 10% SF + 20% FA has a negative effect on the fracture mechanics parameters of concretes at an early age. Based on the analysis of the results of microstructural tests and the evaluation of the propagation of macroscopic cracks, it was established that along with the substitution of the cement binder with the combination of mineral additives, the composition of the cement matrix in these composites changes, which implies a different, i.e., quasi-plastic, behavior in the process of damage and destruction of the material.

5.
Micromachines (Basel) ; 10(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805751

RESUMO

In order to solve the problem of continuous and stable power supply for vehicle sensors, a resonant cavity piezoelectric energy harvester driven by driving wind pressure was designed. The harvester has an effective working range of wind speed. According to the energy conservation law, the cut-in (initial) wind speed of the harvester was solved. The pressure distribution law of the elastic beam in the flow field was studied by the Fluent software package, and the results were loaded into a finite element model with a method of partition loading. The relationship between the wind speed and the maximum principal stress of the piezoelectric cantilever beam was analyzed, and the critical stress method was used to study the cut-out wind speed of the energy harvester. The results show that the cut-in wind speed of the piezoelectric energy harvester is 5.29 m/s, and the cut-out wind speed is 24 m/s. Finally, an experiment on the power generation performance of the energy harvester was carried out. The experimental results show that the cut-in and cut-out wind speeds of the piezoelectric energy harvester are 5 m/s and 24 m/s, respectively, and the best matching load is 60 kΩ. The average output power, generated by the harvester when the driving wind speed is 22 m/s, is 0.145 mW, and the corresponding power density is 1.2 mW/cm3.

6.
Materials (Basel) ; 10(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211029

RESUMO

The paper presents the results of tests on the effect of the low calcium fly ash (LCFA) addition, in the amounts of: 0% (LCFA-00), 20% (LCFA-20) and 30% (LCFA-30) by weight of cement, on fracture processes in structural concretes. In the course of the experiments, compressive strength of concrete and fracture toughness for: I (tensile), II (in-plane shear) and III (anti-plane shear) models of cracking were measured. The tests determined the effect of age of concretes modified with LCFA on the analyzed parameters. The experiments were carried out after: 3, 7, 28, 90, 180 and 365 days of curing. Fracture toughness of concretes was determined in terms of the critical stress intensity factors: K I c S , K I I c , K I I I c and then a generalized fracture toughness K c was specified. The obtained results are significant for the analysis of concrete structures subjected to complex loading. The properties of composites with the additive of LCFA depend on the age of the concrete tested. Mature concretes exhibit high fracture toughness at 20% additive of LCFA, while the additive of LCFA in the amount of 30% weight of cement has a beneficial effect on the parameters of concrete only after half a year of curing.

7.
ACS Infect Dis ; 1(9): 403-15, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-27617923

RESUMO

This paper discusses physical and structural aspects of the mechanisms herpes simplex virus (HSV) uses for membrane fusion. Calculations show that herpes simplex virus glycoprotein D has such avidity for its receptors that it can hold the virion against the plasma membrane of a neuron strongly enough for glycoprotein B (gB) to disrupt both leaflets of the bilayer. The strong electric field generated by the cell potential across perforations at this disruption would break the hydrogen bonds securing the gB fusion loops, leading to fusion of the plasma and viral membranes. This mechanism agrees with the high stability of the tall trimeric spike structure of gB and is consistent with the probable existence of a more compact initial conformation that would allow it to closely approach the plasma membrane. The release of the fusion domains by disruption of hydrogen bonds is shared with the endocytotic entry pathway where, for some cell types not punctured by gB, the virus is able to induce inward forces that cause endocytosis and the fusion loops are released by acidification. The puncture-fusion mechanism requires low critical strain or high tissue strain, matching primary tropism of neural processes at the vermillion border. In support of this mechanism, this paper proposes a functional superstructure of the antigens essential to entry and reviews its consistency with experimental evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA