Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(2): 1074-1084, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37804150

RESUMO

BACKGROUND: The present work estimates the area and corresponding wheat crop production in the study area, which comprises the Etah region of Uttar Pradesh, India. For this purpose, multispectral images of multiple sensors, namely Sentinel-2, Landsat-8 and Landsat-9 during the preharvest period, i.e. March for the years 2021 and 2022, were used. A multispectral information fusion approach was proposed, involving image classification as well as vegetation index-based information extraction. For imposing information fusion, appropriate image bands were identified with the help of separability analysis followed by land cover classification for wheat crop class extraction. Support vector machine (SVM), artificial neural network (ANN) and maximum likelihood (ML) were used for classification, whereas normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC) were used for index-based crop area extraction. RESULTS: A maximum accuracy of 98.34% was achieved for Sentinel-2 data using ANN, whereas a minimum accuracy of 80.21% was achieved for Landsat-9 using the ML classifier. The estimated area for Sentinel-2 data for the year 2021 was 260 540 ha using ANN and 203 240 ha using ML, which is close to the reference data, i.e. 238 600 ha. SVM also showed good performance and calculated least error in estimated crop area for the year 2022 on Sentinel-2 data. It calculated 8 408 490 tons of wheat for the same year. CONCLUSION: The proposed method utilizes a single image per year for extraction of information supported by the ground truth data, which makes it a novel approach to information extraction for crop production monitoring. © 2023 Society of Chemical Industry.


Assuntos
Produção Agrícola , Triticum , Produção Agrícola/métodos , Índia
2.
Sensors (Basel) ; 17(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144394

RESUMO

Image classifications, including sub-pixel analysis, are often used to estimate crop acreage directly. However, this type of assessment often leads to a biased estimation, because commission and omission errors generally do not compensate for each other. Regression estimators combine remote sensing information with more accurate ground data on a field sample, and can result in more accurate and cost-effective assessments of crop acreage. In this pilot study, which aims to produce crop statistics in Guoyang County, the area frame sampling approach is adapted to a strip-like cropping pattern on the North China Plain. Remote sensing information is also used to perform a stratification in which non-agricultural areas are excluded from the ground survey. In order to compute crop statistics, 202 ground points in the agriculture stratum were surveyed. Image classification was included as an auxiliary variable in the subsequent analysis to obtain a regression estimator. The results of this pilot study showed that the integration of remote sensing information as an auxiliary variable can improve the accuracy of estimation by reducing the variance of the estimates, as well as the cost effectiveness of an operational application at the county level in the region.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31336673

RESUMO

This paper developed a type-2 fuzzy interval chance constrained programming model for optimizing a crop area, which integrated chance constrained programming and type-2 fuzzy interval programming. The developed model was then applied to a case study in Wuwei City, Gansu Province, China, and the maximization of economic benefit was selected as the planning objective. Furthermore, different water-saving irrigation modes were considered as the development mode. A series of optimal irrigation water and planting structure schemes were obtained under different violation probabilities in each water-saving scenario. The obtained results could be helpful to make decisions on the planting structure and the optimal use of irrigation water and land resources under multiple uncertainties.


Assuntos
Conservação dos Recursos Hídricos , Produtos Agrícolas , Modelos Teóricos , Agricultura/métodos , China , Cidades , Tomada de Decisões , Probabilidade , Incerteza
4.
PeerJ ; 6: e5824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473929

RESUMO

Agricultural areas are often surveyed using area frame sampling. Using non-updated area sampling frame causes significant non-sampling errors when land cover and usage changes between updates. To address this problem, a novel method is proposed to estimate non-sampling errors in crop area statistics. Three parameters used in stratified sampling that are affected by land use changes were monitored using satellite remote sensing imagery: (1) the total number of sampling units; (2) the number of sampling units in each stratum; and (3) the mean value of selected sampling units in each stratum. A new index, called the non-sampling error by land use change index (NELUCI), was defined to estimate non-sampling errors. Using this method, the sizes of cropping areas in Bole, Xinjiang, China, were estimated with a coefficient of variation of 0.0237 and NELUCI of 0.0379. These are 0.0474 and 0.0994 lower, respectively, than errors calculated by traditional methods based on non-updated area sampling frame and selected sampling units.

5.
GM Crops Food ; 9(1): 1-12, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29337629

RESUMO

The global area of biotech crops in 2016 increased from 179.7 million hectares to 185.1 million hectares, a 3% increase equivalent to 5.4 million hectares. Some 26 countries planted biotech crops, 19 of which were developing countries and seven were industrial. Information and data collected from various credible sources showed variations from the previous year. Fluctuations in biotech crop area (both increases and decreases) are influenced by factors including, among others, acceptance and commercialization of new products, demand for meat and livestock feeds, weather conditions, global market price, disease/pest pressure, and government's enabling policies. Countries which have increased biotech crop area in decreasing order in 2016 were Brazil, United States of America, Canada, South Africa, Australia, Bolivia, Philippines, Spain, Vietnam, Bangladesh, Colombia, Honduras, Chile, Sudan, Slovakia, and Costa Rica. Countries with decreased biotech area in decreasing order were China, India, Argentina, Paraguay, Uruguay, Mexico, Portugal, and Czech Republic, in decreasing incremental decrease in biotech area. Pakistan and Myanmar were the only countries with no change in biotech crop (cotton) planted. Information detailed in the paper including future crops and traits in each country could guide stakeholders in informed crafting of strategies and policies for increased adoption of biotech crops in the country.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Biotecnologia/organização & administração , Países Desenvolvidos , Países em Desenvolvimento , Inocuidade dos Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA