Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958521

RESUMO

In this study, five different aryl polyesters, i.e., poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), poly(octamethylene terephthalate) (POT), poly(nonamethylene terephthalate) (PNT), and poly(decamethylene terephthalate) (PDT), upon crystallization at a suitable temperature range, all exhibit ring-banded spherulites with universal characteristics. Previous research has revealed some fundamental mechanisms underlying the formation of periodic hierarchical structures. Additionally, this study further explored correlations among micro/nanocrystal assemblies in the top surface and internal grating architectures and the structural iridescent properties. The interior lamellar assembly of arylate polyesters' banded spherulites is shown to exhibit periodic birefringence patterns that are highly reminiscent of those found in a variety of biological structures, with the capacity for iridescence from light interference. A laser diffraction analysis was also used to support confirmation of this condition, which could result in an arc diffraction pattern indicative of the presence of ringed spherulites. Among the five arylate polyesters, only PET is incapable of regularly producing ring-banded morphology, and thus cannot produce any iridescent color.


Assuntos
Ácidos Ftálicos , Poliésteres , Poliésteres/química , Iridescência , Cristalização
2.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674938

RESUMO

In the framework of the multitarget inhibitor study, we report an in silico analysis of 1,2-dibenzoylhydrazine (DBH) with respect to three essential receptors such as the ecdysone receptor (EcR), urease, and HIV-integrase. Starting from a crystallographic structural study of accidentally harvested crystals of this compound, we performed docking studies to evaluate the inhibitory capacity of DBH toward three selected targets. A crystal morphology prediction was then performed. The results of our molecular modeling calculations indicate that DBH is an excellent candidate as a ligand to inhibit the activity of EcR receptors and urease. Docking studies also revealed the activity of DBH on the HIV integrase receptor, providing an excellent starting point for developing novel inhibitors using this molecule as a starting lead compound.


Assuntos
Urease , Modelos Moleculares , Simulação de Acoplamento Molecular
3.
Chemistry ; 28(18): e202200334, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35143079

RESUMO

Exerting morphological control over metal-organic frameworks (MOFs) is critical for determining their catalytic performance and to optimize their packing behavior in areas from separations to fuel gas storage. A mechanism-based approach to tailor the morphology of MOFs is introduced and experimentally demonstrated for five cubic Zn4 O-based MOFs. This methodology provides three key features: 1) computational screening for selection of appropriate additives to change crystal morphology based on knowledge of the crystal structure alone; 2) use of additive to metal cluster geometric relationships to achieve morphologies expressing desired crystallographic facets; 3) potential for suppression of interpenetration for certain phases.

4.
Environ Sci Technol ; 56(9): 5929-5938, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435661

RESUMO

Interactions between aqueous ferrous iron (Fe(II)) and secondary Fe oxyhydroxides catalyze mineral recrystallization and/or transformation processes in anoxic soils and sediments, where oxyanions, such as silicate, are abundant. However, the effect and the fate of silicate during Fe mineral recrystallization and transformation are not entirely understood and especially remain unclear for lepidocrocite. In this study, we reacted (Si-)ferrihydrite (Si/Fe = 0, 0.05, and 0.18) and (Si-)lepidocrocite (Si/Fe = 0 and 0.08) with isotopically labeled 57Fe(II) (Fe(II)/Fe(III) = 0.02 and 0.2) at pH 7 for up to 4 weeks. We followed Fe mineral transformations with X-ray diffraction and tracked Fe atom exchange by measuring aqueous and solid phase Fe isotope fractions. Our results show that the extent of ferrihydrite transformation in the presence of Fe(II) was strongly influenced by the solid phase Si/Fe ratio, while increasing the Fe(II)/Fe(III) ratio (from 0.02 to 0.2) had only a minor effect. The presence of silicate increased the thickness of newly formed lepidocrocite crystallites, and elemental distribution maps of Fe(II)-reacted Si-ferrihydrites revealed that much more Si was associated with the remaining ferrihydrite than with the newly formed lepidocrocite. Pure lepidocrocite underwent recrystallization in the low Fe(II) treatment and transformed to magnetite at the high Fe(II)/Fe(III) ratio. Adsorbed silicate inactivated the lepidocrocite surfaces, which strongly reduced Fe atom exchange and inhibited mineral transformation. Collectively, the results of this study demonstrate that Fe(II)-catalyzed Si-ferrihydrite transformation leads to the redistribution of silicate in the solid phase and the formation of thicker lepidocrocite platelets, while lepidocrocite transformation can be completely inhibited by adsorbed silicate. Therefore, silicate is an important factor to include when considering Fe mineral dynamics in soils under reducing conditions.


Assuntos
Compostos Férricos , Minerais , Catálise , Compostos Férricos/química , Óxido Ferroso-Férrico , Minerais/química , Oxirredução , Silicatos , Solo , Água
5.
Proc Natl Acad Sci U S A ; 116(18): 8679-8684, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988187

RESUMO

Crystal growth is governed by an interplay between macroscopic driving force and microscopic interface kinetics at the crystal-liquid interface. Unlike the local equilibrium growth condition, the interplay becomes blurred under local nonequilibrium, which raises many questions about the nature of diverse crystal growth and morphological transitions. Here, we systematically control the growth condition from local equilibrium to local nonequilibrium by using an advanced dynamic diamond anvil cell (dDAC) and generate anomalously fast growth of ice VI phase with a morphological transition from three- to two-dimension (3D to 2D), which is called a shock crystal growth. Unlike expected, the shock growth occurs from the edges of 3D crystal along the (112) crystal plane rather than its corners, which implies that the fast compression yields effectively large overpressure at the crystal-liquid interface, manifesting the local nonequilibrium condition. Molecular dynamics (MD) simulation reproduces the faster growth of the (112) plane than other planes upon applying large overpressure. Moreover, the MD study reveals that the 2D shock crystal growth originates from the similarity of the interface structure between water and the (112) crystal plane under the large overpressure. This study provides insight into crystal growth under dynamic compressions, which makes a bridge for the unknown behaviors of crystal growth between under static and dynamic pressure conditions.

6.
Chemistry ; 27(72): 18135-18140, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34741369

RESUMO

Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2 [ReN(CN)4 ] (1) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1. Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.

7.
Pharm Res ; 38(6): 971-990, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009625

RESUMO

PURPOSE: Application of multi-scale modelling workflows to characterise polymorphism in ritonavir with regard to its stability, bioavailability and processing. METHODS: Molecular conformation, polarizability and stability are examined using quantum mechanics (QM). Intermolecular synthons, hydrogen bonding, crystal morphology and surface chemistry are modelled using empirical force fields. RESULTS: The form I conformation is more stable and polarized with more efficient intermolecular packing, lower void space and higher density, however its shielded hydroxyl is only a hydrogen bond donor. In contrast, the hydroxyl in the more open but less stable and polarized form II conformation is both a donor and acceptor resulting in stronger hydrogen bonding and a more stable crystal structure but one that is less dense. Both forms have strong 1D networks of hydrogen bonds and the differences in packing energies are partially offset in form II by its conformational deformation energy difference with respect to form I. The lattice energies converge at shorter distances for form I, consistent with its preferential crystallization at high supersaturation. Both forms exhibit a needle/lath-like crystal habit with slower growing hydrophobic side and faster growing hydrophilic capping habit faces with aspect ratios increasing from polar-protic, polar-aprotic and non-polar solvents, respectively. Surface energies are higher for form II than form I and increase with solvent polarity. The higher deformation, lattice and surface energies of form II are consistent with its lower solubility and hence bioavailability. CONCLUSION: Inter-relationship between molecular, solid-state and surface structures of the polymorphic forms of ritonavir are quantified in relation to their physical-chemical properties.


Assuntos
Química Farmacêutica/métodos , Cristalização/métodos , Inibidores da Protease de HIV/química , Conformação Molecular , Ritonavir/química , Fenômenos Químicos , Inibidores da Protease de HIV/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ritonavir/metabolismo , Solubilidade , Propriedades de Superfície
8.
Macromol Rapid Commun ; 42(14): e2100281, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34145924

RESUMO

3D morphology of poly(3-hydroxybutyrate) (PHB), crystallized in the presence of diluents of poly(1,3-trimethylene adipate) and poly(ethylene oxide), is probed using a novel approach coupled with selective etching. For interpreting the mechanisms of crystal periodic aggregation, various microscopic techniques and synchrotron microbeam X-ray analysis are used to observe the top surface in connection with the 3D crystal assemblies. Periodic grating architectures, with the cross-bar pitch exactly matching with the optical band spacing, are proved in banded PHB. The crystals under the ridge branch out to spawn finer crystals orienting/bending horizontally underneath the valley band, repeating till species drainage or impingement. The grating structure in the banded PHB resembles many nature's iridescence crystals and is further proved by photonic reflection results as a critical breakthrough novel finding.


Assuntos
Iridescência , Síncrotrons , Ácido 3-Hidroxibutírico , Hidroxibutiratos , Poliésteres , Raios X
9.
J Dairy Sci ; 104(2): 1412-1423, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33189284

RESUMO

In this study dairy phospholipid (PL) gels were made using 3 different concentrations of PL (15%, 30%, and 45%) and soybean oil to determine the gel-forming ability and functional traits that dairy PL have. After 24 h of storage the visual stability, crystal morphology, solid fat content, melting behavior, viscosity, and oil binding capacity of the gels were evaluated. All samples showed visual stability, whereas polarized light microscopy showed that high concentrations of PL reduced PL mobility, preventing tubular micelles from forming at high concentrations of PL (45%). Solid fat content increased with an increase in PL concentration. The melting enthalpy increased as the concentration of PL increased. The viscosity was assessed at 0.01, 0.1, and 1.0 1/s shear rates. A significant difference was observed between the 45% PL samples and the other samples at low and intermediate shear, but at high shear levels, a significant difference was only seen between the 15% PL sample and the other samples. The oil binding capacity showed a significant difference between the 45% PL sample and the other 2 samples. This study shows that dairy PL can be added to a vegetable oil to produce semi-solid material with appropriate functional properties.


Assuntos
Laticínios/análise , Géis/química , Fosfolipídeos/química , Óleo de Soja/química , Animais , Fenômenos Químicos , Cristalização , Gorduras/análise , Fosfolipídeos/análise , Termodinâmica , Viscosidade
10.
Planta ; 249(5): 1627-1643, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826884

RESUMO

MAIN CONCLUSION: This study showed that AP2/EREBP transcription factor MdSHINE2 functioned in mediating cuticular permeability, sensitivity to abscisic acid (ABA), and drought resistance by regulating wax biosynthesis. Plant cuticular wax plays crucial roles in protecting plants from environmental stresses, particularly drought stress. Many enzymes and transcription factors involved in wax biosynthesis have been identified in plant species. In this study, we identified an AP2/EREBP transcription factor, MdSHINE2 from apple, which is a homolog of AtSHINE2 in Arabidopsis. MdSHINE2 was constitutively expressed at different levels in various apple tissues, and the transcription level of MdSHINE2 was induced substantially by abiotic stress and hormone treatments. MdSHINE2-overexpressing Arabidopsis exhibited great change in cuticular wax crystal numbers and morphology and wax composition of leaves and stems. Moreover, MdSHINE2 heavily influenced cuticular permeability, sensitivity to abscisic acid, and drought resistance.


Assuntos
Ácido Abscísico/farmacologia , Secas , Malus/metabolismo , Fator de Transcrição AP-2/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Malus/efeitos dos fármacos , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Molecules ; 23(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572684

RESUMO

An in silico study has been conducted upon (3'RS,5'SR)-5-[2'-benzyl-5'-hydroxymethyl-1',2'-isoxazolidin-3'-yl]uracil through a molecular dynamics/docking approach that highlights its potential inhibitory activity upon the wild-type pseudouridine 5'-monophosphate glycosidase. The crystal structure of this compound has been solved by means of X-ray single crystal diffraction and the data inferred were used to predict its crystal morphology. These data were compared with optical microscopy images and confirmed the validity of the computed models. This robust approach, already used for several other different compounds, provides a fast and reliable tool to standardize a crystallization method in order to get similar and good quality crystals. As different crystal shapes could be associated with different polymorphic forms, this method could be considered a fast and cheap screening to choose among different and coexistent polymorphic forms. Furthermore, a match with the original crystal structure of pseudouridine 5'-monophosphate is provided.


Assuntos
Glicosídeo Hidrolases/química , Nucleosídeos/química , Pseudouridina/química , Cristalização , Cristalografia por Raios X
12.
Angew Chem Int Ed Engl ; 57(41): 13613-13617, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30133948

RESUMO

Cuprous Oxide (Cu2 O) is a photocatalyst with severe photocorrosion issues. Theoretically, it can undergo both self-oxidation (to form copper oxide (CuO)) and self-reduction (to form metallic copper (Cu)) upon illumination with the aid of photoexcited charges. There is, however, limited experimental understanding of the "dominant" photocorrosion pathway. Both photocorrosion modes can be regulated by tailoring the conditions of the photocatalytic reactions. Photooxidation of Cu2 O (in the form of a suspension system), accompanied by corroded morphology, is kinetically favourable and is the prevailing deactivation pathway. With knowledge of the dominant deactivation mode of Cu2 O, suppression of self-photooxidation together with enhancement in its overall photocatalytic performance can be achieved after a careful selection of sacrificial hole (h+ ) scavenger. In this way, stable hydrogen (H2 ) production can be attained without the need for deposition of secondary components.

13.
Food Chem ; 439: 138077, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039607

RESUMO

Myo-inositol, referred to as vitamin B8, is an essential nutrient for maintaining human physiological functions. However, the morphology of myo-inositol products is predominantly powder or needle shaped, leading to poor food properties. In this work, three edible sugar additives, i.e. d-glucose, l-arabinose and d-fructose, are adopted in the crystallization of myo-inositol to improve its food properties. The results show that these additives change the morphology of myo-inositol crystals. d-glucose and l-arabinose reduced the aspect ratio of myo-inositol crystals, and d-glucose transformed elongated lamellar myo-inositol crystals into diamond-shaped lamellar crystals. The diamond-shaped lamellar myo-inositol products exhibited outstanding functional food properties. It offered a smoother texture and more pleasant mouthfeel when the products were added to infant formulas and nutraceuticals. When they were applied to functional beverages, the dissolution rate was increased by 35 %. This work provides a theoretical guidance for improving food properties through crystallization and possesses considerable potential for industrialization.


Assuntos
Arabinose , Açúcares , Humanos , Cristalização , Inositol , Glucose
14.
J Mol Model ; 30(8): 254, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970669

RESUMO

CONTEXT: Ammonium perchlorate (NH4ClO4, abbreviated as AP) has the advantages of high oxygen content, high density, and good compatibility, and has significant application prospects in the field of energetic materials. The crystal morphology has a great influence on the properties and sensibility of energetic materials, and a single experimental means is difficult in exploring the crystals; therefore, the crystal morphology of AP is investigated using molecular dynamics simulation complemented with experiments, to theoretically analyze the differences in AP crystal habit and the interactions between solvent molecules and the main growing crystal surfaces of AP. The results show that AP crystal is mainly composed of five independent crystal surfaces (0 0 1), (0 1 0), (1 0 0), (1 0 1), and (1 0 -1) in vacuum using the BFDH laws, with (0 0 1) surface being the main growth crystal surface. In contrast, in H2O solvent, the (1 0 1) and (1 0 -1) surfaces disappear, and the AP mainly consists of (0 0 1), (0 1 0), and (1 0 0) surfaces with a rectangular shape. The crystal morphology obtained from theoretical prediction is in good agreement with that obtained from experimental culture. This paper can provide a new idea for the cultivation and preparation of AP large crystals, and promote the application of AP crystals in energetic materials. METHODS: The crystal morphologies of AP in vacuum and H2O solvent under Dreiding force field were predicted based on attachment energy model by using molecular dynamics method in Materials Studio 2019 software. The entire molecular dynamics simulation was carried out under the NTV system, the temperature control method was selected as Anderson, and the system temperature was set to 298 K. The simulation time was set to 40 ps, the step size was set to 1 fs, and the data were outputted every 5000 steps.

15.
Food Chem ; 442: 138326, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219563

RESUMO

The residual dextran impurities in the upstream process significantly impact the crystallization of starch-based functional sugar and the related food properties. This study intends to reveal the mechanism of dextran's influence on trehalose crystallization, and build a relationship among the dextran in syrup and the physicochemical and functional properties of trehalose. Instead of incorporating into the crystal lattice, dextran changes the assembly rate of trehalose molecules on crystal surface. The different sensitivity and adsorption capacity of the crystal surface to the chain length of dextran determines the growth rate of crystal surfaces, resulting in different crystal morphology. The bulk trehalose crystals, which were obtained from syrups with short chain dextran, have excellent powder properties, including best flowability (35◦), highest crystal strength (2.7 N), lowest caking rate (62.22 %), and the most uniform mixing with other sweeteners (sucrose/xylitol) in food formulations, achieving more stable starch preservation.


Assuntos
Dextranos , Trealose , Cristalização , Trealose/química , Dextranos/química , Amido , Conservação de Alimentos
16.
Microsc Res Tech ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923109

RESUMO

The morphology of calcium oxalate monohydrate precipitates (COM, Ca(C2O4)·H2O, P21/c, whewellite) occurring as crystals or intergrowths, as well as distribution of crystal-bearing idioblasts, have been studied for the first time in the bark of stone birch Betula ermanii from Sakhalin Island sampled in an area affected by mud volcanism and an unaffected typical forest environment taken for reference. The study addresses several issues (i) number and size of phytoliths and their distribution in different cell types; (ii) density of calcification in specific cells; (iii) habits of single crystals, twins, and complex intergrowths, as well as frequency of different morphologies and their relations. The trends of time-dependent morphological changes in separately analyzed crystals and intergrowths record the evolution of COM morphology from nuclei to mature grains. Of special interest are the nucleation sites and features of organic and inorganic seeds and nuclei for COM phytoliths. The precipitation process and crystal habits are mainly controlled by supersaturation, and it is thus important to constrain the Ca distribution patterns in different bark tissues. The B. ermanii samples were analyzed by several methods: scanning electron microscopy (SEM) for the distribution patterns and micromorphology of COM precipitates and bulk Ca content in bark; electron probe microanalysis (EPMA) for the mineral chemistry of COM precipitates; inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) for trace elements in bulk bark and wood. RESEARCH HIGHLIGHTS: The distribution and morphology of whewellite precipitates in the analyzed B. ermanii bark samples indicate that the aqueous solution was most strongly supersaturated with respect to the Ca(C2O4)·H2O solid phase at the parenchyma-sclerenchyma boundary, where most of the COM spherulites are localized and often coexist with large single crystals and contact COM twins.

17.
IUCrJ ; 11(Pt 1): 23-33, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962472

RESUMO

Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method.


Assuntos
Palmitato de Paliperidona , Pró-Fármacos , Cristalização , Ácidos Graxos
18.
Food Chem ; 449: 139234, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608604

RESUMO

Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.


Assuntos
Cucumis melo , Frutas , Ceras , Ceras/química , Frutas/química , Cucumis melo/química , Parede Celular/química
19.
Curr Res Food Sci ; 8: 100700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435277

RESUMO

Lipid crystallization under moderate hydrostatic pressure treatments (200 MPa, 20 °C, 1-24 h) was studied in palm kernel stearin (PS 100%) and its blends with sunflower oil (PS 80, 90 % w/w). Hyperbarically-crystallized samples exhibited significantly higher firmness, elastic modulus and critical stress values as compared to those of the samples crystallized at atmospheric pressure. These data indicate that moderate hydrostatic pressure favored the formation of a higher amount of small palm kernel stearin crystals as compared to those formed at atmospheric pressure. Pressurization did not affect fat polymorphism, but was able to enhance nucleation instead of crystal growth. This work clearly demonstrated the efficacy of moderate hydrostatic pressure in steering lipid crystallization, opening interesting possible applications of high-pressure processing technology in the fat manufacturing sector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA