Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nano Lett ; 24(19): 5705-5713, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701226

RESUMO

Ruthenium (Ru) is an ideal substitute to commercial Pt/C for the acidic hydrogen evolution reaction (HER), but it still suffers from undesirable activity due to the strong adsorption free energy of H* (ΔGH*). Herein, we propose crystalline phase engineering by loading Ru clusters on precisely prepared cubic and hexagonal molybdenum carbide (α-MoC/ß-Mo2C) supports to modulate the interfacial interactions and achieve high HER activity. Advanced spectroscopies demonstrate that Ru on ß-Mo2C shows a lower valence state and withdraws more electrons from the support than that of Ru on α-MoC, indicative of a strong interfacial interaction. Density functional theory reveals that the ΔGH* of Ru/ß-Mo2C approaches 0 eV, illuminating an enhancement mechanism at the Ru/ß-Mo2C interface. The resultant Ru/ß-Mo2C exhibits an encouraging performance in a proton exchange membrane water electrolyzer with a low cell voltage (1.58 V@ 1.0 A cm-2) and long stability (500 h@ 1.0 A cm-2).

2.
Environ Sci Technol ; 58(29): 13110-13119, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989600

RESUMO

Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.


Assuntos
Mercúrio , Metilação , Adsorção , Nanoestruturas/química , Poluentes Químicos da Água/química , Compostos de Metilmercúrio , Molibdênio/química
3.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675059

RESUMO

The nature of intra- and intermolecular non-covalent interactions was studied in four naphthalene derivatives commonly referred to as "proton sponges". Special attention was paid to an intramolecular hydrogen bond present in the protonated form of the compounds. The unsubstituted "proton sponge" served as a reference structure to study the substituent influence on the hydrogen bond (HB) properties. We selected three compounds substituted by methoxy, amino, and nitro groups. The presence of the substituents either retained the parent symmetry or rendered the compounds asymmetric. In order to reveal the non-covalent interaction properties, the Hirshfeld surface (HS) was computed for the crystal structures of the studied compounds. Next, quantum-chemical simulations were performed in vacuo and in the crystalline phase. Car-Parrinello molecular dynamics (CPMD), Path Integral Molecular Dynamics (PIMD), and metadynamics were employed to investigate the time-evolution changes of metric parameters and free energy profile in both phases. Additionally, for selected snapshots obtained from the CPMD trajectories, non-covalent interactions and electronic structure were studied. Quantum theory of atoms in molecules (QTAIM) and the Density Overlap Regions Indicator (DORI) were applied for this purpose. It was found based on Hirshfeld surfaces that, besides intramolecular hydrogen bonds, other non-covalent interactions are present and have a strong impact on the crystal structure organization. The CPMD results obtained in both phases showed frequent proton transfer phenomena. The proton was strongly delocalized in the applied time-scale and temperature, especially in the PIMD framework. The use of metadynamics allowed for tracing the free energy profiles and confirming that the hydrogen bonds present in "proton sponges" are Low-Barrier Hydrogen Bonds (LBHBs). The electronic and topological analysis quantitatively described the temperature dependence and time-evolution changes of the electronic structure. The covalency of the hydrogen bonds was estimated based on QTAIM analysis. It was found that strong hydrogen bonds show greater covalency, which is additionally determined by the proton position in the hydrogen bridge.


Assuntos
Automóveis , Prótons , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Entropia
4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615652

RESUMO

In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K. Experimental values of this work were compared and combined with the literature data obtained with adiabatic calorimetry. Low-temperature heat capacities of L-threonine and L-lysine, for which no or limited literature data was available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from near 0 K to over 420 K were developed.


Assuntos
Temperatura Alta , Lisina , Metionina , Cisteína/química , Treonina , Serina
5.
Molecules ; 28(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513312

RESUMO

As a follow-up to our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for N-acetyl glycine amide (CAS RN: 2620-63-5), N-acetyl-L-alanine amide (CAS RN: 15962-47-7), N-acetyl-L-valine amide (CAS RN: 37933-88-3), N-acetyl-L-isoleucine amide (CAS RN: 56711-06-9), and N-acetyl-L-leucine amide (CAS RN: 28529-34-2). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The crystal heat capacities of the five N-acetyl amino acid amides were measured by Tian-Calvet calorimetry in the temperature interval (266-350 K), by power compensation DSC in the temperature interval (216-471 K), and by relaxation (heat-pulse) calorimetry in the temperature interval (2-268 K). As a result, reference heat capacities and thermodynamic functions for the crystalline phase from 0 K up to 470 K were developed.


Assuntos
Isoleucina , Valina , Leucina/metabolismo , Isoleucina/metabolismo , Valina/metabolismo , Amidas , Temperatura Alta , Aminoácidos , Alanina , Glicina
6.
Angew Chem Int Ed Engl ; 62(18): e202301937, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36859761

RESUMO

Although phase transition materials (PTMs) under external stimuli are of great research interest duo to their rich potential applications, it is still challenging to explore multi-responsive PTMs. Herein, two different phases of organic-inorganic hybrid copper-based halides, α- and ß-Gua3 Cu2 I5 (Gua+ =CN3 H6 + ), were synthesized by solvent evaporation method, which they crystalize in the noncentrosymmetric space group Fdd2 with zero-dimensional structure and centrosymmetric space group C2/c with one-dimensional metal-halogen framework, respectively. Interestingly, it is firstly demonstrated that Gua3 Cu2 I5 simultaneously possesses reversible PL conversion and NLO switching properties in response to thermal stimulus. Strikingly, apart from heat, its structural phase transition can also be triggered by crystalline-phase-recognition (CPR) and mechanical force. These new findings may pave a path for future exploration of PTMs with multiple physical properties.

7.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161771

RESUMO

An on-line multi-frequency electrical resistance tomography (mfERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al2O3) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low fL and high fH, for thermal noise compensation. THD is determined by a percentage evaluation of k-th harmonic distortions of ZnO at f=0.1~10,000 Hz. The fL and fH are determined by the thermal noise behavior estimation at different temperatures. At  f <100 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined fL≥ 10,000 Hz and fH≈ 1,000,000 Hz, thermal noise is significantly compensated. The on-line mfERT was tested in the experiments of a non-conductive Al2O3 rod dipped into conductive molten zinc-borate (60ZnO-40B2O3) at 1000~1200 °C. As a result, the on-line mfERT is able to reconstruct the Al2O3 rod inclusion images in the high-temperature fields with low error, ςfL, T = 5.99%, at 1000 °C, and an average error ⟨ςfL⟩ = 9.2%.

8.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430650

RESUMO

The structure, morphology, and sonophotocatalytic activity of Ni-Zn-Co ferrite nanoparticles, embedded in a SiO2 matrix and produced by a modified sol-gel method, followed by thermal treatment, were investigated. The thermal analysis confirmed the formation of metal succinate precursors up to 200 °C, their decomposition to metal oxides and the formation of Ni-Zn-Co ferrites up to 500 °C. The crystalline phases, crystallite size and lattice parameter were determined based on X-ray diffraction patterns. Transmission electron microscopy revealed the shape, size, and distribution pattern of the ferrite nanoparticles. The particle sizes ranged between 34 and 40 nm. All the samples showed optical responses in the visible range. The best sonophotocatalytic activity against the rhodamine B solution under visible irradiation was obtained for Ni0.3Zn0.3Co0.4Fe2O4@SiO2.


Assuntos
Nanopartículas , Níquel , Níquel/química , Dióxido de Silício , Nanopartículas/química , Zinco/química
9.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955614

RESUMO

The structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) type ferrites produced by thermal decomposition at 700 and 1000 °C were studied. The thermal analysis revealed that the ferrites are formed at up to 350 °C. After heat treatment at 1000 °C, single-phase ferrite nanoparticles were attained, while after heat treatment at 700 °C, the CoFe2O4 was accompanied by Co3O4 and the MnFe2O4 by α-Fe2O3. The particle size of the spherical shape in the nanoscale region was confirmed by transmission electron microscopy. The specific surface area below 0.5 m2/g suggested a non-porous structure with particle agglomeration that limits nitrogen absorption. By heat treatment at 1000 °C, superparamagnetic CoFe2O4 nanoparticles and paramagnetic NiFe2O4, MnFe2O4, CuFe2O4 and ZnFe2O4 nanoparticles were obtained.


Assuntos
Cobalto , Magnetismo , Cobalto/química , Fenômenos Magnéticos , Óxidos , Zinco/química
10.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069244

RESUMO

The O-H...N and O-H...O hydrogen bonds were investigated in 10-hydroxybenzo[h]quinoline (HBQ) and benzo[h]quinoline-2-methylresorcinol complex in vacuo, solvent and crystalline phases. The chosen systems contain analogous donor and acceptor moieties but differently coupled (intra- versus intermolecularly). Car-Parrinello molecular dynamics (CPMD) was employed to shed light onto principle components of interactions responsible for the self-assembly. It was applied to study the dynamics of the hydrogen bonds and vibrational features as well as to provide initial geometries for incorporation of quantum effects and electronic structure studies. The vibrational features were revealed using Fourier transformation of the autocorrelation function of atomic velocity and by inclusion of nuclear quantum effects on the O-H stretching solving vibrational Schrödinger equation a posteriori. The potential of mean force (Pmf) was computed for the whole trajectory to derive the probability density distribution and for the O-H stretching mode from the proton vibrational eigenfunctions and eigenvalues incorporating statistical sampling and nuclear quantum effects. The electronic structure changes of the benzo[h]quinoline-2-methylresorcinol dimer and trimers were studied based on Constrained Density Functional Theory (CDFT) whereas the Electron Localization Function (ELF) method was applied for all systems. It was found that the bridged proton is localized on the donor side in both investigated systems in vacuo. The crystalline phase simulations indicated bridged proton-sharing and transfer events in HBQ. These effects are even more pronounced when nuclear quantization is taken into account, and the quantized Pmf allows the proton to sample the acceptor area more efficiently. The CDFT indicated the charge depletion at the bridged proton for the analyzed dimer and trimers in solvent. The ELF analysis showed the presence of the isolated proton (a signature of the strongest hydrogen bonds) only in some parts of the HBQ crystal simulation. The collected data underline the importance of the intramolecular coupling between the donor and acceptor moieties.


Assuntos
Quinolinas/química , Teoria da Densidade Funcional , Elétrons , Análise de Fourier , Gases , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Resorcinóis/química , Vibração
11.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360798

RESUMO

Non-covalent interactions responsible for molecular features and self-assembly in Naphthazarin C polymorph were investigated on the basis of diverse theoretical approaches: Density Functional Theory (DFT), Diffusion Quantum Monte Carlo (DQMC), Symmetry-Adapted Perturbation Theory (SAPT) and Car-Parrinello Molecular Dynamics (CPMD). The proton reaction paths in the intramolecular hydrogen bridges were studied. Two potential energy minima were found indicating that the proton transfer phenomena occur in the electronic ground state. Diffusion Quantum Monte Carlo (DQMC) and other levels of theory including Coupled Cluster (CC) employment enabled an accurate inspection of Potential Energy Surface (PES) and revealed the energy barrier for the proton transfer. The structure and reactivity evolution associated with the proton transfer were investigated using Harmonic Oscillator Model of Aromaticity - HOMA index, Fukui functions and Atoms In Molecules (AIM) theory. The energy partitioning in the studied dimers was carried out based on Symmetry-Adapted Perturbation Theory (SAPT) indicating that dispersive forces are dominant in the structure stabilization. The CPMD simulations were performed at 60 K and 300 K in vacuo and in the crystalline phase. The temperature influence on the bridged protons dynamics was studied and showed that the proton transfer phenomena were not observed at 60 K, but the frequent events were noticed at 300 K in both studied phases. The spectroscopic signatures derived from the CPMD were computed using Fourier transformation of autocorrelation function of atomic velocity for the whole molecule and bridged protons. The computed gas-phase IR spectra showed two regions with OH absorption that covers frequencies from 2500 cm-1 to 2800 cm-1 at 60 K and from 2350 cm-1 to 3250 cm-1 at 300 K for both bridged protons. In comparison, the solid state computed IR spectra revealed the environmental influence on the vibrational features. For each of them absorption regions were found between 2700-3100 cm-1 and 2400-2850 cm-1 at 60 K and 2300-3300 cm-1 and 2300-3200 cm-1 at 300 K respectively. Therefore, the CPMD study results indicated that there is a cooperation of intramolecular hydrogen bonds in Naphthazarin molecule.


Assuntos
Simulação de Dinâmica Molecular , Naftoquinonas/química , Ligação de Hidrogênio , Teoria Quântica
12.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577113

RESUMO

Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller-Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers' stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm-1-1700 cm-1 and 2300 cm-1-3400 cm-1 in the gas phase and 600 cm-1-1800 cm-1 and 2200 cm-1-3400 cm-1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm-1-1700 cm-1 and 2300 cm-1-3300 cm-1 for the gas phase and one broad absorption region in the solid state between 700 cm-1 and 3100 cm-1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.

13.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809075

RESUMO

A series of poly(pyridinium salt)s-fluorene main-chain ionic polymers with various organic counterions were synthesized by using ring-transmutation polymerization and metathesis reactions. Their chemical structures were characterized by Fourier Transform Infrared (FTIR), proton (1H), and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers. These polymers showed a number-average molecular weight (Mns) between 96.5 and 107.8 kg/mol and polydispersity index (PDI) in the range of 1.12-1.88. They exhibited fully-grown lyotropic phases in polar protic and aprotic solvents at different critical concentrations. Small-angle X-ray scattering for one polymer example indicates lyotropic structure formation for 60-80% solvent fraction. A lyotropic smectic phase contains 10 nm polymer platelets connected by tie molecules. The structure also incorporates a square packing motif within platelets. Thermal properties of polymers were affected by the size of counterions as determined by differential scanning calorimetry and thermogravimetric analysis measurements. Their ultraviolet-visible (UV-Vis) absorption spectra in different organic solvents were essentially identical, indicating that the closely spaced π-π* transitions occurred in their conjugated polymer structures. In contrast, the emission spectra of polymers exhibited a positive solvatochromism on changing the polarity of solvents. They emitted green lights in both polar and nonpolar organic solvents and showed blue light in the film-states, but their λem peaks were dependent on the size of the counterions. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0-90%), and their λem peaks were blue shifted.

14.
Environ Res ; 182: 108987, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812936

RESUMO

Aluminum oxide nanoparticles (Al2O3 NPs) can be found in different crystalline phases, and with the emergence of nanotechnology there has been a rapid increase in the demand for Al2O3 NPs in different engineering areas and for consumer products. However, a careful evaluation of the potential environmental and human health risks is required to assess the implications of the release of Al2O3 NPs into the environment. Thus, the objective of this study was to investigate the toxicity of two crystalline phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), toward Daphnia magna and evaluate the risk to the aquatic ecology of Al2O3 NPs with different crystalline phases, based on a probabilistic approach. Different techniques were used for the characterization of the Al2O3 NPs. The toxicity toward Daphnia magna was assessed based on multiple toxicological endpoints, and the probabilistic species sensitivity distribution (PSSD) was used to estimate the risk of Al2O3 NPs to the aquatic ecology. The results obtained verify the toxic potential of the NPs toward D. magna even in sublethal concentrations, with a more pronounced effect being observed for η-Al2O3 NPs. The toxicity is associated with an increase in the reactive oxygen species (ROS) content and deregulation of antioxidant enzymatic/non-enzymatic enzymes (CAT, SOD and GSH). In addition, changes in MDA levels were observed, indicating that D. magna was under oxidative stress. The most prominent chronic toxic effects were observed in the organisms exposed to η-Al2O3 NPs, since the lowest LOEC was 3.12 mg/L for all parameters, while for α-Al2O3 NPs the lowest LOEC was 6.25 mg/L for longevity, growth and reproduction. However, the risk assessment results indicate that, based on a probabilistic approach, Al2O3 NPs (alpha, gamma, delta, eta and theta) only a very limited risk to organisms in surface waters.


Assuntos
Óxido de Alumínio , Nanopartículas Metálicas , Poluentes Químicos da Água , Óxido de Alumínio/toxicidade , Animais , Daphnia , Humanos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Medição de Risco , Poluentes Químicos da Água/toxicidade
15.
Proc Natl Acad Sci U S A ; 112(22): 6898-901, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25991859

RESUMO

We predict by first-principles methods a phase transition in TiO2 at 6.5 Mbar from the Fe2P-type polymorph to a ten-coordinated structure with space group I4/mmm. This is the first report, to our knowledge, of the pressure-induced phase transition to the I4/mmm structure among all dioxide compounds. The I4/mmm structure was found to be up to 3.3% denser across all pressures investigated. Significant differences were found in the electronic properties of the two structures, and the metallization of TiO2 was calculated to occur concomitantly with the phase transition to I4/mmm. The implications of our findings were extended to SiO2, and an analogous Fe2P-type to I4/mmm transition was found to occur at 10 TPa. This is consistent with the lower-pressure phase transitions of TiO2, which are well-established models for the phase transitions in other AX2 compounds, including SiO2. As in TiO2, the transition to I4/mmm corresponds to the metallization of SiO2. This transformation is in the pressure range reached in the interiors of recently discovered extrasolar planets and calls for a reformulation of the equations of state used to model them.

16.
Biochim Biophys Acta ; 1858(7 Pt B): 1556-65, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26850737

RESUMO

Biological membranes display a great diversity in lipid composition and lateral structure that is crucial in a variety of cellular functions. Simulations of membranes have contributed significantly to the understanding of the properties, functions and behaviour of membranes and membrane-protein assemblies. This success relies on the ability of the force field used to describe lipid-lipid and lipid-environment interactions accurately, reproducibly and realistically. In this review, we present some recent progress in lipid force-field development and validation strategies. In particular, we highlight how a range of properties obtained from various experimental techniques on lipid bilayers and membranes, can be used to assess the quality of a force field. We discuss the limitations and assumptions that are inherent to both computational and experimental approaches and how these can influence the comparison between simulations and experimental data. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Membrana Celular/química , Membrana Celular/ultraestrutura , Bicamadas Lipídicas/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Fluidez de Membrana , Estresse Mecânico
17.
Nano Lett ; 16(4): 2418-25, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26978479

RESUMO

In this paper, we correlate the growth of InAs nanowires with the detailed interface trap density (Dit) profile of the vertical wrap-gated InAs/high-k nanowire semiconductor-dielectric gate stack. We also perform the first detailed characterization and optimization of the influence of the in situ doping supplied during the nanowire epitaxial growth on the sequential transistor gate stack quality. Results show that the intrinsic nanowire channels have a significant reduction in Dit as compared to planar references. It is also found that introducing tetraethyltin (TESn) doping during nanowire growth severely degrades the Dit profile. By adopting a high temperature, low V/III ratio tailored growth scheme, the influence of doping is minimized. Finally, characterization using a unique frequency behavior of the nanowire capacitance-voltage (C-V) characteristics reveals a change of the dopant incorporation mechanism as the growth condition is changed.

18.
Mol Biol (Mosk) ; 50(5): 887-896, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27830692

RESUMO

The current notion of the organization of molecules in a cholesteric phase is fairly well substantiated in the case of low-molecular-weight compounds. However, this question is open to discussion in the case of double-stranded nucleic acids. In this work, an attempt to compare the well-known data on the structure of cholesteric phases formed by double-stranded DNA molecules and the results of experimental modeling obtained by the authors has been undertaken. The comparison brings leads to assumption regarding the high probability of the existence of both short-range (positional) and long-range (orientational) order in the arrangement of double-stranded DNA molecules in the liquid crystalline phase. The presence of the orientational order, i.e., the rotation of quasinematic layers of double-stranded DNA molecules through a small angle, determines the formation of a spatially twisted (cholesteric) structure with specific physical and chemical properties. In addition, these results prompt a suggestion on the mode of the ordering of dsDNA molecules in liquid-crystalline dispersion particles and allow these particles to be considered candidate biosensing units.


Assuntos
DNA de Protozoário/química , Dinoflagellida/química , Cristais Líquidos/química
19.
J Environ Sci (China) ; 47: 14-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27593268

RESUMO

TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1.


Assuntos
Resíduos Industriais , Metalurgia , Modelos Químicos , Nanoestruturas , Titânio
20.
Biochim Biophys Acta ; 1841(1): 180-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24201377

RESUMO

Discoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1. We compared the apoA-I configuration in D-HDL reconstituted with dimyristoylphosphatidylcholine by both procedures using fluorescence resonance energy transfer measurements with apoA-I tryptophan mutants and fluorescently labeled cysteine mutants. Results indicate that apoA-I configuration in D-HDL depends on the reconstitution process and are consistent with a "double belt" molecular arrangement with different helix registry. As reported by others, a configuration with juxtaposition of helices 5 of each apoAI monomer (5/5 registry) predominates in D-HDL obtained by CD. However, a configuration with helix 5 of one monomer juxtaposed with helix 2 of the other (5/2 registry) would predominate in D-HDL generated by DM. Moreover, we also show that the kinetics of cholesterol efflux from macrophage cultures depends on the reconstitution process, suggesting that apoAI configuration is important for this HDL function.


Assuntos
Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Substituição de Aminoácidos , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Linhagem Celular , Colesterol/química , Colesterol/genética , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA