Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 10(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744695

RESUMO

The oceanic crust is the world's largest and least explored biosphere on Earth. The basaltic subsurface of Surtsey island in Iceland represents an analog of the warm and newly formed-oceanic crust and offers a great opportunity for discovering novel microorganisms. In this study, we collected borehole fluids, drill cores, and fumarole samples to evaluate the culturable bacterial diversity from the subsurface of the island. Enrichment cultures were performed using different conditions, media and temperatures. A total of 195 bacterial isolates were successfully cultivated, purified, and identified based on MALDI-TOF MS analysis and by 16S rRNA gene sequencing. Six different clades belonging to Firmicutes (40%), Gammaproteobacteria (28.7%), Actinobacteriota (22%), Bacteroidota (4.1%), Alphaproteobacteria (3%), and Deinococcota (2%) were identified. Bacillus (13.3%) was the major genus, followed by Geobacillus (12.33%), Enterobacter (9.23%), Pseudomonas (6.15%), and Halomonas (5.64%). More than 13% of the cultured strains potentially represent novel species based on partial 16S rRNA gene sequences. Phylogenetic analyses revealed that the isolated strains were closely related to species previously detected in soil, seawater, and hydrothermal active sites. The 16S rRNA gene sequences of the strains were aligned against Amplicon Sequence Variants (ASVs) from the previously published 16S rRNA gene amplicon sequence datasets obtained from the same samples. Compared with the culture-independent community composition, only 5 out of 49 phyla were cultivated. However, those five phyla accounted for more than 80% of the ASVs. Only 121 out of a total of 5642 distinct ASVs were culturable (≥98.65% sequence similarity), representing less than 2.15% of the ASVs detected in the amplicon dataset. Here, we support that the subsurface of Surtsey volcano hosts diverse and active microbial communities and that both culture-dependent and -independent methods are essential to improving our insight into such an extreme and complex volcanic environment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36360601

RESUMO

This study investigated the effect of different doses of fertilization with biomass combustion ash (Salix viminalis L. willow) on changes in the biological, chemical, and physical properties of soil. The experiment was carried out on podzolic and chernozem soils in a one-way field experiment (fertilization dose: control (without fertilization), NPK (nitrogen (N), phosphorus (P) and potassium (K)), 100, 200, 300, 400, 500 kg K2O ha-1). The biomass ash was characterized by a pH value of 12.83 ± 0.68 and a high content of macronutrients. The samples were collected from 0-5, 10-15, and 20-25 cm soil layers under the cultivation of spring barley (Hordeum vulgare L) cv. Planet in April and August 2021. Mass spectrometry (MALDI-TOF MS) was used for microbiological analyses, which revealed the presence of 53 culturable species from 11 genera: Bacillus, Pseudomonas, Paenibacillus, Lysinibacillus, Pseudarthrobacter, Arthrobacter, Staphylococcus, Paenarthrobacter, Micrococcus, Rhodococcus, and Flavobacterium. The podzolic and chernozem soils exhibited the presence of 28 and 44 culturable species, respectively. The study showed an increase in the number of microorganisms in the top layer of the soil profile. However, the number of bacteria decreased at the depths of 10-15 cm and 20-25 cm. With depth, the bulk density (BD) and moisture increased.


Assuntos
Hordeum , Solo , Solo/química , Biomassa , Microbiologia do Solo , Fósforo/análise , Nitrogênio/análise , Bactérias , Fertilização , Fertilizantes/análise
3.
PeerJ ; 8: e10060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150062

RESUMO

Despite recent great advances in microbial culture, most microbes have not yet been cultured, and the impact of medium composition on the isolation of microbes from natural systems has not been elucidated. To optimize media for culturing marine microbes, microbial communities in three sediment samples were described using high-throughput sequencing (HTS) and culture-dependent techniques. HTS revealed communities dominated by Gammaproteobacteria, and culture-based methods revealed communities dominated by Actinobacteria. Among the total operational taxonomic units (OTUs) from the HTS dataset, 6% were recovered in the culture collection. Four potentially novel bacterial strains belonging to Oceaniovalibus, Psychrobacter and Salegentibacter were isolated. The combination of media cultured more taxa than any single medium. Nutrient-rich and single-carbon/nitrogen-source media supported the growth of relatively few taxa, and the quality of nitrogen strongly influenced the types of bacteria isolated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA