Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123956

RESUMO

This paper expands a recently proposed peak current-mode (PCM) control method for a power factor correction (PFC) boost converter to include the totem-pole converter and solves the controller's compatibility problem with the totem-pole converter by proposing three input current sensing methods. Using MATLAB/Simulink 2023b, simulation experiments on a 2 kW totem-pole converter utilizing the PFC PCM controller were carried out to assess the performance of the controller with the proposed sensing methods. The findings indicate that under steady-state conditions, all three proposed sensing methods performed input current shaping successfully and yielded nearly identical THD% of about 4.4% in the input current waveform. However, it is noteworthy that method 2, referred to as the memory method, exhibited a sluggish and less robust transient response in comparison to the swift and resilient responses observed with method 1 and method 3. Additionally, the third proposed method, which involves a single current sensor positioned across the input inductor, emerged as the optimal and cost-effective sensing solution. This method achieved the same desirable attributes of fast and robust control while utilizing only a single current sensor, a notable advantage over method 1, which employs two current sensors.

2.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36991734

RESUMO

This paper proposes a high-gain low-noise current signal detection system for biosensors. When the biomaterial is attached to the biosensor, the current flowing through the bias voltage is changed so that the biomaterial can be sensed. A resistive feedback transimpedance amplifier (TIA) is used for the biosensor requiring a bias voltage. Current changes in the biosensor can be checked by plotting the current value of the biosensor in real time on the self-made graphical user interface (GUI). Even if the bias voltage changes, the input voltage of the analog to digital converter (ADC) does not change, so it is designed to plot the current of the biosensor accurately and stably. In particular, for multi-biosensors with an array structure, a method of automatically calibrating the current between biosensors by controlling the gate bias voltage of the biosensors is proposed. Input-referred noise is reduced using a high-gain TIA and chopper technique. The proposed circuit achieves 1.8 pArms input-referred noise with a gain of 160 dBΩ and is implemented in a TSMC 130 nm CMOS process. The chip area is 2.3 mm2, and the power consumption of the current sensing system is 12 mW.


Assuntos
Técnicas Biossensoriais , Ruído , Retroalimentação
3.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772496

RESUMO

In this paper, we assess the effect of cryostat bridge vibrations on the plasma current measurement accuracy when using a fiber optic current sensor (FOCS) in ITER. The impact of vibrations on the light polarization state was first experimentally investigated using a miniaturized mock-up which represented a relevant part of the ITER FOCS structure. The set-up was then numerically simulated using the Jones matrix approach. Equivalent vibration matrices obtained from the experiment were used in the simulations to determine the effect of the vibrations on the FOCS accuracy. It is demonstrated that although the vibrations imply some changes in the polarization state, this effect can be strongly reduced when a proper low-birefringent spun optical fiber is used. The ITER requirement regarding the plasma current measurement accuracy can therefore be fulfilled.

4.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514775

RESUMO

Precise current sensing is essential for several power electronics' protection, control, and reliability mechanisms. Even so, WBG power converters will likely struggle to develop a single current-sensing scheme to measure various types of currents due to the limited space and size of these devices, the required high sensing speed, and the high electromagnetic interference (EMI) emissions they cause. Analysis of existing current sensors was conducted in such terms with the objective of understanding the challenges associated with their integration into WBG power converters. Since each of these requirements has different design tradeoffs, it is challenging to consider one specific method of current sensing to be perfect for all situations; thus, the possibility of developing novel methods to improve the performance of these single-scheme current sensors is further explored.

5.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35898013

RESUMO

This paper presents a new water-level-sensing mechanism based on planar coils fabricated on a printed circuit board (PCB). In addition to level, the sensor detects any relative increase in conductivity compared to that of clean water, which is an indicator of its quality. The sensing mechanism utilizes the eddy current induced in the water column, the corresponding change in the coil inductance, and the change in the turn-to-turn capacitance of the coil in the presence of water. Although several level sensors are available, there is none that gives the level and quality information using a single sensing element. Since both water quantity and quality measurements are fundamental in realizing efficient water and wastewater management, obtaining these two parameters from the same sensor is very beneficial. A scalable, planar coil-based sensor that helps achieve this goal is designed, fabricated, and tested in a laboratory setting. The results illustrate that the reactance of the sensor coil measured at a frequency (1 kHz for the prototype) much lower than the self-resonance of the coil gives reliable information about the level of water, while the measurement made at resonance, using an inductance-to-digital converter, is a clear indicator of its conductivity and, hence, quality.

6.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616716

RESUMO

Nowadays the rationalization of electrical energy consumption is a serious concern worldwide. Energy consumption reduction and energy efficiency appear to be the two paths to addressing this target. To achieve this goal, many different techniques are promoted, among them, the integration of (artificial) intelligence in the energy workflow is gaining importance. All these approaches have a common need: data. Data that should be collected and provided in a reliable, accurate, secure, and efficient way. For this purpose, sensing technologies that enable ubiquitous data acquisition and the new communication infrastructure that ensure low latency and high density are the key. This article presents a sensing solution devoted to the precise gathering of energy parameters such as voltage, current, active power, and power factor for server farms and datacenters, computing infrastructures that are growing meaningfully to meet the demand for network applications. The designed system enables disaggregated acquisition of energy data from a large number of devices and characterization of their consumption behavior, both in real time. In this work, the creation of a complete multiport power meter system is detailed. The study reports all the steps needed to create the prototype, from the analysis of electronic components, the selection of sensors, the design of the Printed Circuit Board (PCB), the configuration and calibration of the hardware and embedded system, and the implementation of the software layer. The power meter application is geared toward data centers and server farms and has been tested by connecting it to a laboratory server rack, although its designs can be easily adapted to other scenarios where gathering the energy consumption information was needed. The novelty of the system is based on high scalability built upon two factors. Firstly, the one-on-one approach followed to acquire the data from each power source, even if they belong to the same physical equipment, so the system can correlate extremely well the execution of processes with the energy data. Thus, the potential of data to develop tailored solutions rises. Second, the use of temporal multiplexing to keep the real-time data delivery even for a very high number of sources. All these ensure compatibility with standard IoT networks and applications, as the data markup language is used (enabling database storage and computing system processing) and the interconnection is done by well-known protocols.

7.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696157

RESUMO

This paper aims to thoroughly investigate the potential of ion current measurements in the context of combustion process monitoring in gas turbines. The study is targeted at characterizing the dynamic behavior of a typical ion-current measurement system based on a spark-plug. Starting from the preliminary study published in a previous work, the authors propose a refined model of the electrode (spark plug), based on the Langmuir probe theory, that incorporates the physical surface effects and proposes an optimized design of the conditioning electronics, which exploits a low frequency AC square wave biasing of the electrodes and allows for compensating some relevant parasitic effects. The authors present experimental results obtained in the laboratory, which allow for the evaluation of the validity of the model and the interpreting of the characteristics of the measurement signal. Finally, measurements carried out in the field on an industrial combustor are presented. The results confirm that the charged chemical species density sensed by the proposed measurement system and related to the mean value of the output signal is an indicator of the 'average' combustion process conditions in terms e.g., of air/fuel ratio, whereas the high frequency spectral component of the measured signal can give information related to the turbulent regime and to the presence of pressure pulsations. Results obtained with a prototype system demonstrated an achievable resolution of about 5 Pa on the estimated amplitude, even under small biasing voltage (22.5 V) and an estimated bandwidth of 10 kHz.

8.
Sensors (Basel) ; 21(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203066

RESUMO

The reliable and cost-effective condition monitoring of the bearings installed in water pumps is a real challenge in the industry. This paper presents a novel strong feature selection and extraction algorithm (SFSEA) to extract fault-related features from the instantaneous power spectrum (IPS). The three features extracted from the IPS using the SFSEA are fed to an extreme gradient boosting (XBG) classifier to reliably detect and classify the minor bearing faults. The experiments performed on a lab-scale test setup demonstrated classification accuracy up to 100%, which is better than the previously reported fault classification accuracies and indicates the effectiveness of the proposed method.


Assuntos
Algoritmos , Água , Análise de Falha de Equipamento
9.
Sensors (Basel) ; 20(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171825

RESUMO

This paper presents a feasibility study on how to implement power quality (PQ) metrics in a low-cost smart metering platform. The study is aimed at verifying the possibility of implementing PQ monitoring in distribution networks without replacing existing smart metering devices or adding new modules for PQ measurements, thus zeroing the installation costs. To this aim, an electronic board, currently used for remote energy metering, was chosen as a case study, specifically the STCOMET platform. Starting from the specifications of this device, the possibility of implementing power quality metrics is investigated in order to verify if compliance with standard requirements for PQ instruments can be obtained. Issues related to device features constraints are discussed; possible solutions and correction algorithms are presented and experimentally verified for different PQ metrics with a particular focus on harmonic analysis. The feasibility study takes into account both the use of on-board voltage and current transducers for low voltage applications and also the impact of external instrument transformers on measurement results.

10.
Sensors (Basel) ; 19(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766634

RESUMO

Accurate and reliable lightning current data are the basis of lightning protection design. To measure lightning current data at different measurement locations in a transmission system, the limitations of traditional lightning current sensors are analyzed, and optical current sensing technology is adopted, which has the advantages of no magnetic saturation and no bandwidth limitation. Compared with traditional application environments, the sensing technology is used in special environments in transmission systems. This paper analyzes the influence of environmental factors on sensors, and combines the extreme environmental requirements, such as temperature and insulation requirements, to study the sensor. Starting from the sensitivity, the sensing characteristics of the sensor are analyzed. The sensor is designed according to three aspects: sensing material selection, spatial measuring position, and sensing material size optimization, such that it can satisfy the different measurement requirements of towers, overhead ground wires, and transmission lines, respectively. The experiments indicate that the developed sensors can meet the measurement sensitivity requirements of different types of lightning strikes. The experimental results of sensors exhibit a reasonable amplitude measurement accuracy, linearity, and waveform measurement capability. These results provide important theoretical and experimental bases for the application of optical current sensing technology to the measurement of the lightning current of transmission systems.

11.
Sensors (Basel) ; 16(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213382

RESUMO

High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 µm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/isolamento & purificação , Bicamadas Lipídicas/química , Descoberta de Drogas/métodos , Humanos , Canais Iônicos/química , Dispositivos Lab-On-A-Chip
12.
Micromachines (Basel) ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276860

RESUMO

A sensitive non-contact sensing system based on the CoFeNiSiB amorphous ribbon giant magnetoimpedance (GMI) effect is proposed for current testing. The sensing system consists of a GMI probe, a sinusoidal current generator, a voltage follower, a preamplifier, a low-pass filter, and a peak detector. Four different GMI probes derived from amorphous ribbon meanders are designed and fabricated through MEMS processes. GMI probes were driven by a 10 MHz, 5 mA AC current. A permanent magnet was used to provide a bias magnetic field for the probe. The effect of the bias magnetic field on the output DC voltage was investigated. This non-contact current sensing system exhibits good sensitivity and linearity at a bias magnetic field Hbias = 15 Oe. The sensitivity can reach up to 24.2 mV/A in the ±1.5 A range.

13.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475288

RESUMO

Proton exchange membranes are an essential component of proton-exchange membrane fuel cells (PEMFC). Their performance is directly related to the development of ionic channel networks through hydration. Current sensing atomic force microscopy (CSAFM) can map the local conductance and morphology of a sample surface with sub-nano resolution simultaneously by applying a bias voltage between the conducting tip and sample holder. In this study, the ionic channel network variation of Nafion by hydration has been quantitatively characterized based on the basic principles of electrodynamics and CSAFM. A nano-sized PEMFC has been created using a Pt-coated tip of CSAFM and one side Pt-coated Nafion, and studied under different relative humidity (RH) conditions. The results have been systematically analyzed. First, the morphology of PEMFC under each RH has been studied using line profile and surface roughness. Second, the CSAFM image has been analyzed statistically through the peak value and full-width half-maximum of the histograms. Third, the number of protons moving through the ionic channel network (NPMI) has been derived and used to understand ionic channel network variation by hydration. This study develops a quantitative method to comprehend variations in the ionic channel network by calculating the movement of protons into the ionic channel network based on CSAFM images. To verify the method, a comparison is made between the NPMI and the changes in proton conductivity under different RH conditions and it reveals a good agreement. This developed method can offer a quantitative approach for characterizing the morphological structure of PEM. Also, it can provide a quantitative tool for interpretating CSAFM images.

14.
Materials (Basel) ; 16(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570175

RESUMO

This study investigates the use of eddy-current technology and impedance spectroscopy in sensing the change in rubber properties after it is exposed to accelerated thermal aging. The thermal aging process, by application of temperature and pressure over time, of ethylene propylene diene monomer (EPDM) rubbers containing both carbon black (CB) and graphene are investigated. Both eddy-current sensing and electrical impedance measurement techniques were used for electromagnetic analysis. Both methods measure the in- and out-of-phase responses as a function of excitation frequency at room temperature. The measurements were performed before and after the aging process. The electrical percolation threshold was detected in the rubber samples by varying the CB content from 0 to 40 wt%. In the rubber sample containing 30 wt% CB, 0-5 wt% of the CB was replaced with graphene flakes. The substitution of graphene for CB in the EPDM rubber formulation provided an enhanced eddy-current and electrical impedance response. The findings demonstrate the feasibility of employing electromagnetic analysis techniques to investigate the extent of aging.

15.
Micromachines (Basel) ; 12(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34683217

RESUMO

A high-resolution sensor using a piezoelectric drum transducer is proposed for power frequency current sensing (50 Hz or 60 Hz). The utilization of the magnetic circuit helps to enhance the response to the electric currents in the power cords. The high sensitivity of the sensor originates from the superposition of the Ampere forces and the amplified piezoelectric effect of the drum transducer. The feasibility of the sensor was verified by experiments. The device exhibits a broad 3 dB bandwidth of 67.4 Hz without an additional magnetic field bias. The average sensitivity is 31.34 mV/A with a high linearity of 0.49%, and the resolution of the sensor attains 0.02 A. The resolution is much higher than that of the previous piezoelectric heterostructure for two-wire power-cords. Error analysis shows that the uncertainty reaches 0.01865 mV at the current of 2.5 A. Meanwhile, the device can generate a load power of 447.9 nW with an optimal load resistance of 55 KΩ at 10A (f = 50 Hz) in energy harvesting experiments. The features of high sensitivity, excellent linearity, high resolution, low costs, and convenient installation demonstrate the application prospect of the proposed device for measuring power frequency currents in electric power grids.

16.
Micromachines (Basel) ; 10(6)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234603

RESUMO

This paper presents a shear-mode piezoelectric current sensing device for two-wire power cords in electric power grids. The piezoelectric heterostructure consists of a cymbal structure and a permalloy plate. The cymbal structure is constructed from a permanent magnet, a brass cap, and shear-mode piezoelectric materials. The permalloy plate concentrates the magnetic field generated by the two-wire power cord on the magnet. Under the force amplification effect of the cymbal structure, the response of the device is improved. A prototype has been fabricated to conduct the experiments. The experimental average sensitivity of the device is 12.74 mV/A in the current range of 1-10 A with a separating distance of d = 0 mm, and the resolution reaches 0.04 A. The accuracy is calculated to be ±0.0177 mV at 1.5 A according to the experimental voltage distribution. The current-to-voltage results demonstrate that the proposed heterostructure can also be used as a magnetoelectric device without bias.

17.
Ultramicroscopy ; 196: 186-191, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439605

RESUMO

Enabling temperature dependent experiments in Atomic Force Microscopy is of great interest to study materials and surface properties at the nanoscale. By studying Curie temperature of multiferroic materials, temperature dependent phase transitions on crystalline structures or resistive switching phenomena are only a few examples of applications. We present an equipment capable of cooling samples using a thermoelectric cooling stage down to -61.4 °C in a 15 × 15 mm2 sample plate. The equipment uses a four-unit thermoelectric stack to achieve maximum temperature range, with low electrical and mechanical noise. The equipment is installed into a Keysight 5500LS Atomic Force Microscopy maintaining its compatibility with all Electrical and Mechanical modes of operation. We study the contribution of the liquid cooling pump vibration into the cantilever static deflection noise and the temperature dependence of the cantilever deflection. A La0.7Sr0.3MnO3-y thin film sample is used to demonstrate the performance of the equipment and its usability by analyzing the resistive switching phenomena associated with this oxide perovskite.

18.
ACS Sens ; 3(3): 574-579, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29420015

RESUMO

Ionic current sensing methods are useful tools for detecting sub- to several-micron scale particles such as bacteria. However, conventional commercially available ionic current sensing devices are not suitable for on-site measurement use because of inherent limitations on their robustness. Here, we proposed a portable robust ionic current sensor (Robust-ICS) using a bridge circuit that offers a high signal-to-noise (S/N) ratio by suppressing background current. Because the Robust-ICS can tolerate increased noise in current sensing, a simple, lightweight electromagnetic shield can be used and measurements under large electromagnetic noise conditions can be made. The weight of the device was lowered below 4 kg and outdoor particle detection measurements were completed successfully. Accuracy of size detection of Staphylococcus aureus ( S. aureus) was equivalent to that obtained by SEM imaging.


Assuntos
Fenômenos Eletromagnéticos , Staphylococcus aureus/citologia , Tamanho da Partícula , Propriedades de Superfície
19.
Anal Sci ; 34(12): 1347-1349, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30449832

RESUMO

We have demonstrated a PM2.5 analysis method that adds information on the number concentration and size by using microfluidic-based ionic current sensing with a bridge circuit. The bridge circuit allows for suppression of the background current and the detection of small PM2.5 particles, even if a relatively large micropore is used. This is the first demonstration of the detection of PM2.5 particles via ionic current sensing; our method enables analyses of both the number concentration and size.

20.
Beilstein J Nanotechnol ; 5: 2070-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551034

RESUMO

The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I-V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA