Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(15): e202303977, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224196

RESUMO

The factors governing 1,3-dipolar cycloaddition reactions involving C≡P-containing compounds are computationally explored in detail using quantum chemical tools. To this end, the parent process involving tBuN3 and tBuCP is analyzed and compared to the analogous reaction involving organometallic cyaphide complexes (metal=Au, Pt, Ge, Mg), in order to understand the role of the metal fragment in such transformations. It is found that while the metal fragment does not significantly influence the aromaticity of the corresponding concerted transition states or the regioselectivity of the transformation, it may modify the reactivity of the cyaphide complexes (i. e. Ge and Mg cyaphide complexes are comparatively more reactive). The computed reactivity trends and the factors behind the regioselectivity of the cycloaddition reaction are quantitatively analyzed with the help of the activation strain model in combination with the energy decomposition analysis method.

2.
Chemistry ; 30(40): e202303370, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38727553

RESUMO

The first example of a bis(cyaphido) complex, trans-[Ru(dppe)2(C≡P)2], is described, unequivocally demonstrating the synthetic accessibility and stability of complexes that feature more than one cyaphido ligand. Synthesis is achieved from the precedent cation [Ru(dppe)2(C≡P)]+ via sequential coordination and desilylation of the phosphaalkyne Me3SiC≡P. The heteroleptic analogue trans-[Ru(dppe)2(C≡N)(C≡P)] is also prepared from the same cation and NaCN; both cyaphido complexes are structurally characterized, enabling the first direct comparison of cyaphide with cyanide, its isoelectronic and isolobal counterpart. This demonstrates an enhanced π-acidity for -C≡P over -C≡N, while computational studies reveal also a higher π-donor character for the cyaphido ligand.

3.
Chemistry ; 29(52): e202301648, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37338223

RESUMO

Several examples of the cyaphide-azide 1,3-dipolar cycloaddition reaction to afford metallo-triazaphospholes are reported. The gold(I) triazaphospholes Au(IDipp)(CPN3 R) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; R=t Bu, Ad, Dipp), magnesium(II) triazaphospholes, {Mg(Dipp NacNac)(CPN3 R)}2 (Dipp NacNac=CH{C(CH3 )N(Dipp)}2 , Dipp=2,6-diisopropylphenyl; R=t Bu, Bn), and germanium(II) triazaphosphole Ge(Dipp NacNac)-(CPN3 t Bu) can be prepared straightforwardly, under mild conditions and in good yields, in a manner reminiscent of the classic alkyne-azide click reaction (albeit without a catalyst). This reactivity can be extended to compounds with two azide functional groups such as 1,3-diazidobenzene. It is shown that the resulting metallo-triazaphospholes can be used as precursors to carbon-functionalized species, including protio- and iodo-triazaphospholes.

4.
Angew Chem Int Ed Engl ; 62(38): e202309211, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37449867

RESUMO

We describe the use of the cyaphide-azide 1,3-dipolar cycloaddition reaction for the synthesis of a new class of inorganic rotaxanes containing gold(I) triazaphosphole stoppers. Electron-deficient bis-azides, which thread perethylated pillar[5]arene in aromatic solvents, readily react with two equivalents of Au(IDipp)(CP) (IDipp=1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene) to afford interlocked molecules via an inorganic click reaction. These transformations proceed in good yields (ca. 65 %) and in the absence of a catalyst. The resulting organometallic rotaxanes are air- and moisture-stable and can be purified by column chromatography under aerobic conditions. The targeted rotaxanes were characterized by multi-element nuclear magnetic resonance (NMR) spectroscopy, mass-spectrometry, and single-crystal X-ray diffraction.

5.
Angew Chem Int Ed Engl ; 62(11): e202218047, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656139

RESUMO

The cyaphide anion, CP- , is shown to undergo three distinct oligomerization reactions in the coordination sphere of metals. Reductive coupling of Au(IDipp)(CP) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) by Sm(Cp*)2 (OEt2 ) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), was found to afford a tetra-metallic complex containing a 2,3-diphosphabutadiene-1,1,4,4-tetraide fragment. By contrast, non-reductive dimerization of Ni(SIDipp)(Cp)(CP) (SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene; Cp=cyclopentadienyl), gives rise to an asymmetric bimetallic complex containing a 1,3-diphosphacyclobutadiene-2,4-diide moiety. Spontaneous trimerization of Sc(Cp*)2 (CP) results in the formation of a trimetallic complex containing a 1,3,5-triphosphabenzene-2,4,6-triide fragment. These transformations show that while cyaphido transition metal complexes can be readily accessed using metathesis reactions, many such species are unstable to further oligomerization processes.

6.
Angew Chem Int Ed Engl ; 62(32): e202217749, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36626283

RESUMO

We review the known chemistry of the cyaphide ion, (C≡P)- . This remarkable diatomic anion has been the subject of study since the late nineteenth century, however its isolation and characterization eluded chemists for almost a hundred years. In this mini-review, we explore the pioneering synthetic experiments that first allowed for its isolation, as well as more recent developments demonstrating that cyaphide transfer is viable in well-established salt-metathesis protocols. The physical properties of the cyaphide ion are also explored in depth, allowing us to compare and contrast the chemistry of this ion with that of its lighter congener cyanide (an archetypal strong field ligand and important organic functional group). Recent studies show that the cyaphide ion has the potential to be used as a versatile chemical regent for the synthesis of novel molecules and materials, hinting at many interesting future avenues of investigation.

7.
Angew Chem Int Ed Engl ; 61(39): e202208921, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35876032

RESUMO

We describe the synthesis of a cyapho(dicyano)methanide salt, [K(18-crown-6)][C(CN)2 (CP)], from reaction of [Na(18-crown-6)][PH2 ] (18-crown-6=1,4,7,10,13,16-hexaoxacyclooctadecane) with 1,1-diethoxy-2,2-dicyanoethylene (EtO)2 C=C(CN)2 . The reaction proceeds through a Michael addition-elimination pathway to afford [Na(18-crown-6)][HP{C(OEt)=C(CN)2 }]. Addition of a strong, non-nucleophilic base (KHMDS) to this intermediate results in the formation of [K(18-crown-6)][C(CN)2 (CP)]. Subsequent reactivity studies reveal that the cyapho(dicyano)methanide ion is susceptible to protonation with strong acids to afford the parent acid HC(CN)2 (CP). The reactivity of the cyaphide moiety in [C(CN)2 (CP)]- was explored through coordination to metal centers and in cycloaddition reactions with azides.

8.
Angew Chem Int Ed Engl ; 61(33): e202206783, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35695304

RESUMO

The synthesis of heterometallic transition metal complexes featuring bridging cyaphide ions (C≡P- ) is reported. These are synthesized from reactions of Au(IDipp)(CP) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with electron-rich, nucleophilic transition metal reagents, affording Au(IDipp)(µ2 -C≡P)Ni(Me Ii Pr)2 (Me Ii Pr=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) and Au(IDipp)(µ2 -C≡P)Rh(Cp*)(PMe3 ). These studies reveal that, in contrast to the cyanide ion, bimetallic cyaphido complexes strongly favor a η1 : η2 coordination mode that maximizes the interaction of the second metal (Ni, Rh) with the π-manifold of the ion (and not the phosphorus atom lone pair). End-on bridging can be effectively unlocked by blocking the π-manifold, as demonstrated by reaction of Au(IDipp)(µ2 -C≡P)Rh(Cp*)(PMe3 ) with an electrophilic transition metal reagent, W(CO)5 (THF), which affords the heterotrimetallic compound Au(IDipp)(µ3 -C≡P)[Rh(Cp*)(PMe3 )][W(CO)5 ].

9.
Chemistry ; 27(17): 5322-5343, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33067841

RESUMO

The chemistry of transition metal carbynes, Ln M≡CR, has historically been dominated by species bearing hydrocarbyl or amino 'R' substituents, with other elements appearing only sporadically. In recent years, carbynes and related 'C1 ' species bearing other main-group substituents, particularly heavier elements of the p-block, have begun to emerge. This review details the chemistry of heavier pnictogen-functionalised C1 ligands, MCARn (A=P, As, Sb, Bi; n=0-3), including their syntheses, properties and reactivities, and how these are distinguished from more traditional carbyne complexes. Recent developments in the closely related phospha-isonitrile Ln M(CPR), cya-phosphide and cya-arside ligands, Ln M(C≡A) (A=P, As), are also discussed.

10.
Angew Chem Int Ed Engl ; 60(48): 25286-25289, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34554622

RESUMO

We describe a facile synthesis of the cyapho-cyanamide salt [Na(18-crown-6)][N(CN)(CP)] from reaction of [Na(18-crown-6)][PH2 ] (18-crown-6=1,4,7,10,13,16-hexaoxacyclooctadecane) with dimethyl N-cyanocarbonimidate, (MeO)2 C=N(CN). The reaction proceeds with elimination of two equivalents of methanol. Careful tuning of the reaction conditions allowed for the isolation and characterization of the N-cyano(carboximidate)phosphide intermediate [HP{C(OMe)N(CN)}]- . Due to the adverse effects of methanol in these reaction mixtures, a bulk scale synthesis of [Na(18-crown-6)][N(CN)(CP)] could be achieved by addition of a base (LiHMDS) to neutralize the resulting alcohol. Further reactivity studies of this anion reveal that functionalization at the phosphorus atom is viable to yield a new family of cyanide-functionalised phosphorus heterocycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA