Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811853

RESUMO

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Assuntos
Caenorhabditis elegans , Cisteína , Cistina , Camundongos Knockout , Oxirredução , Proteoma , Tiorredoxinas , Animais , Humanos , Camundongos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cisteína/metabolismo , Cistina/metabolismo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteoma/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética
2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499557

RESUMO

Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Humanos , Masculino , Linfócitos T , Próstata , Antígenos de Histocompatibilidade Classe II/metabolismo , Neoplasias da Próstata/metabolismo , Peptídeos/metabolismo , Linfócitos T CD4-Positivos , Apresentação de Antígeno
3.
J Proteome Res ; 20(1): 289-304, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141586

RESUMO

To understand and treat immunology-related diseases, a comprehensive, unbiased characterization of major histocompatibility complex (MHC) peptide ligands is of key importance. Preceding the analysis by mass spectrometry, MHC class I peptide ligands are typically isolated by MHC immunoaffinity chromatography (MHC-IAC) and less often by mild acid elution (MAE). MAE may provide a cheap alternative to MHC-IAC for suspension cells but has been hampered by the high number of contaminating, MHC-unrelated peptides. Here, we optimized MAE, yielding MHC peptide ligand purities of more than 80%. When compared with MHC-IAC, obtained peptides were similar in numbers, identities, and to a large extent intensities, while the percentage of cysteinylated peptides was 5 times higher in MAE. The latter benefitted the discovery of MHC-allotype-specific, distinct cysteinylation frequencies at individual positions of MHC peptide ligands. MAE revealed many MHC ligands with unmodified, N-terminal cysteine residues which get lost in MHC-IAC workflows. The results support the idea that MAE might be particularly valuable for the high-confidence analysis of post-translational modifications by avoiding the exposure of the investigated peptides to enzymes and reactive molecules in the cell lysate. Our improved and carefully documented MAE workflow represents a high-quality, cost-effective alternative to MHC-IAC for suspension cells.


Assuntos
Cisteína , Peptídeos , Cromatografia de Afinidade , Antígenos de Histocompatibilidade Classe I/metabolismo , Espectrometria de Massas , Ligação Proteica
4.
Adv Exp Med Biol ; 1071: 83-88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357737

RESUMO

Previous data showed the lack of efficacy of an adrenoceptor antagonist to revert hypertension induced by chronic intermittent hypoxia (CIH). We hypothesized that, in addition to sympathetic activation, CIH may change the availability and dynamics of cysteine. Temporal variation in total cysteine and its fractions, free reduced, free oxidized and protein-bound (CysSSP), were measured in homogenates of kidney cortex and medulla of Wistar rats. Animals were exposed to CIH for 14, 21 and 60 days and cysteine fractions and fibronectin gene expression were assessed at these time-points. Two different phases in cysteine dynamics were identified. An early phase (14d) characterized by an increase in cysteine oxidation and CysSSP forms. Late events (>21d) were characterized by a global reduction in cysteine, minimum level of CysSSP and maximum overexpression of fibronectin in kidney cortex. In conclusion, cysteine dynamics is influenced by the duration of CIH exposure: first there is a cysteine disulfide stress-like adaptive response followed by a progressive loss of cysteine availability and a decrease in CysSSP fraction. Kidney fibrosis associated to an unbalance in cysteine dynamics might contribute to the inefficacy of available antihypertensive drugs in patients with delayed diagnosis of sleep apnea.


Assuntos
Cisteína , Hipertensão/fisiopatologia , Hipóxia/fisiopatologia , Estresse Oxidativo , Animais , Ratos , Ratos Wistar
5.
Proc Natl Acad Sci U S A ; 111(7): 2758-63, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24497506

RESUMO

A cone snail venom peptide, µO§-conotoxin GVIIJ from Conus geographus, has a unique posttranslational modification, S-cysteinylated cysteine, which makes possible formation of a covalent tether of peptide to its target Na channels at a distinct ligand-binding site. µO§-conotoxin GVIIJ is a 35-aa peptide, with 7 cysteine residues; six of the cysteines form 3 disulfide cross-links, and one (Cys24) is S-cysteinylated. Due to limited availability of native GVIIJ, we primarily used a synthetic analog whose Cys24 was S-glutathionylated (abbreviated GVIIJSSG). The peptide-channel complex is stabilized by a disulfide tether between Cys24 of the peptide and Cys910 of rat (r) NaV1.2. A mutant channel of rNaV1.2 lacking a cysteine near the pore loop of domain II (C910L), was >10(3)-fold less sensitive to GVIIJSSG than was wild-type rNaV1.2. In contrast, although rNaV1.5 was >10(4)-fold less sensitive to GVIIJSSG than NaV1.2, an rNaV1.5 mutant with a cysteine in the homologous location, rNaV1.5[L869C], was >10(3)-fold more sensitive than wild-type rNaV1.5. The susceptibility of rNaV1.2 to GVIIJSSG was significantly altered by treating the channels with thiol-oxidizing or disulfide-reducing agents. Furthermore, coexpression of rNaVß2 or rNaVß4, but not that of rNaVß1 or rNaVß3, protected rNaV1.1 to -1.7 (excluding NaV1.5) against block by GVIIJSSG. Thus, GVIIJ-related peptides may serve as probes for both the redox state of extracellular cysteines and for assessing which NaVß- and NaVα-subunits are present in native neurons.


Assuntos
Conotoxinas/toxicidade , Dissulfetos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Neurônios/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Conotoxinas/genética , Conotoxinas/metabolismo , Cisteína/metabolismo , Primers do DNA/genética , DNA Complementar/genética , Dados de Sequência Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo
6.
J Clin Biochem Nutr ; 58(1): 23-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26798194

RESUMO

Recent evidence has indicated that total fiber intake is inversely related to type 2 diabetes risk. The present study aimed to investigate the effects of chronic administration of partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, on the occurrence of diabetes and its complications, fatty liver and nephropathy. We also identified predictive serum biomarkers of treatment response to PHGG by mass spectroscopy-based proteomic analysis using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a good model of human non-insulin-dependent diabetes mellitus. In this study, at 5 weeks of age, OLETF rats and control strain Long-Evans Tokushima Otsuka (LETO) rats were fed a control diet or a high-fiber diet (5% PHGG) for 57 weeks. Body weight, food intake, oral glucose tolerance test, plasma insulin levels, and urine glucose and protein levels were regularly measured. Oral glucose tolerance tests (OGTT) and storage of serum in a deep freezer were conducted at the beginning of the experiment and every 4 weeks after overnight fasting during the experiments. PHGG treatment affected neither meal patterns nor the body weight of OLETF and LETO rats. Repeated measure analysis of variance revealed significant differences in fasting plasma glucose and plasma glucose at 2 h after OGTT between control OLETF (OLETF-C) rats and OLETF rats treated with PHGG (OLETF-F). The glucose response determined by the area under the curve of OGTT was significantly greater in OLETF-C rats than that in OLETF-F rats at 25 weeks of age. HOMA-IR, an index of insulin resistance, increased at 25 weeks of age in OLETF-C rats, while this increase was significantly inhibited in OLETF-F rats. At 62 weeks of age, PHGG treatment significantly improved hepatic steatosis as well as renal mesangial matrix accumulation in OLETF rats. To identify the risk marker for diabetes mellitus by SELDI-TOF MS, we collected sera from 21-week-old individuals. Among the 12 specific peaks that were risk marker candidates for diabetes mellitus, the m/z 13,720 peak was identified as that of cysteinylated transthyretin by sequencing of four tryptic peptides using tandem mass spectrometry and peak distribution around the m/z 13,720 peak in the SELDI-TOF spectra. In conclusion, we found that chronic treatment with PHGG improved insulin resistance, delayed the onset of diabetes, and inhibited the development of diabetic complications, as well as identified cysteinylated transthyretin as a predictive biomarker of treatment response to PHGG in OLETF rats.

7.
Metab Syndr Relat Disord ; 22(5): 372-384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696648

RESUMO

Aims: Cys34 albumin redox modifications (reversible "cysteinylation" and irreversible "di/trioxidation"), besides being just oxidative stress biomarkers, may have primary pathogenetic roles to initiate and/or aggravate cell, tissue, and vascular damage in diabetes. In an exploratory "proof-of-concept" pilot study, we examined longitudinal changes in albumin oxidation during diabetes therapy. Methods: Mass spectrometric analysis was utilized to monitor changes in human serum albumin (HSA) post-translational modifications {glycation [glycated albumin (GA)], cysteinylation [cysteinylated albumin (CA) or human non-mercaptalbumin-1; reversible], di/trioxidation (di/trioxidized albumin or human non-mercaptalbumin-2; irreversible), and truncation (truncated albumin)} during ongoing therapy. Four informative groups of subjects were evaluated [type 1 diabetes (T1DM), type 2 diabetes (T2DM), prediabetes-obesity, and healthy controls] at baseline, and subjects with diabetes were followed for a period up to 280 days. Results: At baseline, T2DM was associated with relatively enhanced albumin cysteinylation (CA% total) compared with T1DM (P = 0.004), despite comparable mean hyperglycemia (P values: hemoglobin A1c = 0.09; GA = 0.09). T2DM, compared with T1DM, exhibited selectively and significantly higher elevations of all the "individual" glycated cum cysteinylated ("multimodified") albumin isoforms (P values: CysHSA+1G = 0.003; CysHSA+2G = 0.007; and CysHSA+3G = 0.001). Improvements in glycemic control and decreases in albumin glycation during diabetes therapy in T2DM were not always associated with concurrent reductions of albumin cysteinylation, and in some therapeutic situations, albumin cysteinylation worsened (glycation-cysteinylation discordance). Important differences were observed between the effects of sulfonylureas and metformin on albumin molecular modifications. Conclusions: T2DM was associated with higher oxidative (cysteinylation) and combined (cysteinylation plus glycation) albumin molecular modifications, which are not ameliorated by improved glucose control alone. Further studies are required to establish the clinical significance and optimal therapeutic strategies to address oxidative protein damage and resulting consequences in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Albumina Sérica Glicada , Hipoglicemiantes , Oxirredução , Albumina Sérica Humana , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Hipoglicemiantes/uso terapêutico , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Glicosilação , Projetos Piloto , Adulto , Albumina Sérica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/análise , Glicemia/metabolismo , Estudos de Casos e Controles , Idoso , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Processamento de Proteína Pós-Traducional , Metformina/uso terapêutico , Cisteína/metabolismo
8.
J Mol Biol ; 433(24): 167303, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34666044

RESUMO

Antibodies with exceptional breadth and potency have been elicited in some individuals during natural HIV-1 infection. Elicitation and affinity maturation of broadly neutralizing antibodies (bnAbs) is therefore the central goal of HIV-1 vaccine development. The functional properties of bnAbs also make them attractive as immunotherapeutic agents, which has led to their production and optimization for passive immunotherapy. This process requires in vitro manufacturing and monitoring of any heterogeneous expression, especially when subpopulations of antibodies are produced with varying levels of biological activity. Post-translational modification (PTM) of antibodies can contribute to heterogeneity and is the focus of this study. Specifically, we have investigated cysteinylation in a bnAb lineage (PCDN family) targeting the N332-glycan supersite on the surface envelope glycoprotein (Env) of HIV-1. This PTM is defined by capping of unpaired cysteine residues with molecular cysteine. Through chromatography and mass spectrometry, we were able to characterize subpopulations of cysteinylated and non-cysteinylated antibodies when expressed in mammalian cells. The crystal structures of two PCDN antibodies represent the first structures of a cysteinylated antibody and reveal that the cysteinylation in this case is located in CDRH3. Biophysical studies indicate that cysteinylation of these HIV-1 antibodies does not interfere with antigen binding, which has been reported to occur in other cysteinylated antibodies. As such, these studies highlight the need for further investigation of cysteinylation in anti-HIV and other bnAbs.


Assuntos
Anticorpos Antivirais/química , Anticorpos Amplamente Neutralizantes/química , Cisteína/química , HIV-1/imunologia , Processamento de Proteína Pós-Traducional , Anticorpos Monoclonais/química , Cristalografia , Células HEK293 , Humanos
9.
MAbs ; 12(1): 1854923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33317401

RESUMO

Cysteinylation is a post-translational modification (PTM) that occurs when a cysteine residue on a protein forms a disulfide bond with a terminal cysteine molecule. This PTM has been found in the hinge region of several recombinant therapeutic IgG2 antibodies, but the impact of cysteinylation on the safety and immunogenicity of therapeutics remains unclear. In this study, we characterized recombinant and endogenous IgG2 antibodies to quantify their levels of hinge cysteinylation, if present. To the best of our knowledge, this is the first study to identify and quantify hinge cysteinylation in endogenous IgG2 antibodies from healthy human serum. We used anti-IgG2 immunopurification of human serum to specifically enrich for endogenous IgG2 antibodies, and then subjected the resulting samples to Lys-C peptide mapping coupled with targeted mass spectrometry techniques. Using this analytical workflow, we found that all healthy human serum samples tested (N = 10) contained quantifiable levels of hinge cysteinylation (0.8 ± 0.3%) in their endogenous human IgG2s (IgG2-A isoform). These findings demonstrate that hinge cysteinylation in therapeutic IgG2s, at least up to a certain level, is well tolerated in humans and pose minimal safety or immunogenicity risks.


Assuntos
Cisteína , Imunoglobulina G , Processamento de Proteína Pós-Traducional , Cisteína/sangue , Cisteína/química , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/química
10.
Clin Biochem ; 81: 20-26, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32380091

RESUMO

OBJECTIVES: Cardiovascular disease is one of the major causes of death in patients with end-stage kidney disease who have undergone kidney transplantation. Since the complication of cardiovascular disease in patients with chronic kidney disease is strongly linked to oxidative stress, understanding the oxidative stress condition after kidney transplantation would be of great importance for the prevention of cardiovascular disease. This study examined whether improvement of renal function after kidney transplantation has an impact on the redox state of the Cys34 residue of albumin that reflects the level of oxidative stress in blood. DESIGN & METHODS: We enrolled 23 patients with end-stage renal failure who received kidney transplantation. All patients were followed for 180 days after transplantation. The fractions of albumin isoforms were determined by the electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) method. RESULTS: Serum creatinine decreased significantly immediately after kidney transplantation, suggesting successful transplantations. The ESI-TOFMS method identified three albumin isoforms cysteinylated at the Cys34 residue (Cys-Cys34-albumin) and the three corresponding albumin isoforms without Cys34 cysteinylation. The fraction of total Cys-Cys34-albumin decreased transiently after kidney transplantation, and was followed by an elevation at day 7 and gradual decrease thereafter until day 180. Meanwhile, reduced albumin concentration did not change until day 14 after kidney transplantation, then showed a significant increase compared to pre-transplant level at day 30 and remained stably elevated until day 180. CONCLUSIONS: Actual reduced albumin levels were found to exceed pre-transplant levels on or after day 30 following kidney transplantation unlike immediate restoration of renal function. Renal function was recovered immediately following kidney transplantation, but reduced albumen concentration increased above the pre-transplant levels only from day 30 after transplantation.


Assuntos
Cisteína/química , Falência Renal Crônica/terapia , Transplante de Rim/métodos , Estresse Oxidativo , Albumina Sérica/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Processamento de Proteína Pós-Traducional , Albumina Sérica/metabolismo
11.
FEBS Lett ; 592(11): 1789-1803, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754429

RESUMO

Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1I-IV ) and its Cys60Ala mutant. In combination with multi-angle light-scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions.


Assuntos
Moléculas de Adesão Celular/química , Multimerização Proteica , Substituição de Aminoácidos , Moléculas de Adesão Celular/genética , Cisteína/química , Cisteína/genética , Humanos , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Quaternária de Proteína
12.
MAbs ; 10(8): 1236-1247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30130449

RESUMO

Bispecific antibodies are an emergent class of biologics that is of increasing interest for therapeutic applications. In one bispecific antibody format, single-chain variable fragments (scFv) are linked to or inserted in different locations of an intact immunoglobulin G (IgG) molecule to confer dual epitope binding. To improve biochemical stability, cysteine residues are often engineered on the heavy- and light-chain regions of the scFv to form an intrachain disulfide bond. Although this disulfide bond often improves stability, it can also introduce unexpected challenges to manufacturing or development. We report size variants that were observed for an appended scFv-IgG bispecific antibody. Structural characterization studies showed that the size variants resulted from the engineered disulfide bond on the scFv, whereby the engineered disulfide was found to be either open or unable to form an intrachain disulfide bond due to cysteinylation or glutathionylation of the cysteines. Furthermore, the scFv engineered cysteines also formed intermolecular disulfide bonds, leading to the formation of highly stable dimers and aggregates. Because both the monomer variants and dimers showed lower bioactivity, they were considered to be product-related impurities that must be monitored and controlled. To this end, we developed and optimized a robust, precise, and accurate high-resolution size-exclusion chromatographic method, using a statistical design-of-experiments methodology.


Assuntos
Anticorpos Biespecíficos/química , Dissulfetos/química , Imunoglobulina G/química , Anticorpos de Cadeia Única/química , Animais , Anticorpos Biespecíficos/imunologia , Células CHO , Cromatografia em Gel/métodos , Cricetinae , Cricetulus , Cisteína/química , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Células THP-1
13.
MAbs ; 8(4): 718-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050640

RESUMO

Post-translational modifications can have a signification effect on antibody stability. A comprehensive approach is often required to best understand the underlying reasons the modification affects the antibody's potency or aggregation state. Monoclonal antibody 001 displayed significant variation in terms of potency, as defined by surface plasmon resonance testing (Biacore), from lot to lot independent of any observable aggregation or degradation, suggesting that a post-translational modification could be driving this variability. Analysis of different antibody lots using analytical hydrophobic interaction chromatography (HIC) uncovered multiple peaks of varying size. Electrospray ionization mass spectrometry (ESI-MS) indicated that the antibody contained a cysteinylation post-translational modification in complementarity-determining region (CDR) 3 of the antibody light chain. Fractionation of the antibody by HIC followed by ESI-MS and Biacore showed that the different peaks were antibody containing zero, one, or two cysteinylation modifications, and that the modification interferes with the ability of the modified antibody arm to bind antigen. Molecular modeling of the modified region shows that this oxidation of an unpaired cysteine in the antibody CDR would block a potential antigen binding pocket, suggesting an inhibition mechanism.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/química , Cisteína/química , Processamento de Proteína Pós-Traducional/imunologia , Animais , Regiões Determinantes de Complementaridade/imunologia , Camundongos , Modelos Moleculares
14.
J Pharm Sci ; 105(3): 1043-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26928399

RESUMO

On account of its long circulating half-life, human serum albumin (HSA) is susceptible to posttranslational modifications that can alter its functions. Here, we comprehensively compared the degree of posttranslational modifications with the functional impairment of HSA derived from 5 different commercially available albumin preparations and clarified their relationships. We used electrospray ionization-time of flight mass spectrometry to evaluate the degree of posttranslational modification of the entire HSA molecule that was associated with disease development and found that the fraction of Cys34-cysteinylated HSA (Cys-Cys34-HSA), a major form of oxidative modification, varied substantially among the albumin preparations. Meanwhile, no remarkable difference was found in the degree of glycated or N-terminal truncated HSA among the preparations tested. The nonosmotic pressure maintenance functions of HSA, such as its antioxidative and ligand-binding activities significantly differed among the preparations. Interestingly, the alternations of these functions showed a significantly negative correlation only with the Cys-Cys34-HSA fraction. These findings suggest that the Cys-Cys34-HSA fraction, as estimated by electrospray ionization-time of flight mass spectrometry can be used as a predictive marker for the functional impairment of albumin preparations and that it would be preferable to use albumin preparations with higher contents of functionally effective albumin that correspond to a lower degree of cysteinylation of Cys34 in clinical practice.


Assuntos
Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Albumina Sérica/química , Albumina Sérica/metabolismo , Biomarcadores/sangue , Cisteína/química , Cisteína/metabolismo , Meia-Vida , Humanos , Oxirredução , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
J Clin Cell Immunol ; 6(4)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26807308

RESUMO

Prostate cancer is the second most diagnosed cancer in men and current treatment of advanced prostate cancer is ineffective. Immunotherapy has emerged as a promising treatment option for metastatic prostate cancer but its clinical application is still in the early stages of development. In order to treat metastatic prostate tumors, new directions must be taken to improve current immunotherapeutic strategies. These include the identification of effective tumor antigens (Ags), the induction of the HLA class II pathway for Ag processing and CD4+ T cell activation, and the ability of tumor cells to act like Ag presenting cells. In this review, we suggest a model for tumor Ag selection, epitope modification and self-processing for presentation by class II proteins as a means of restoring immune activation and tumor clearance. We also outline the importance of a Gamma-IFN-inducible Lysosomal Thiol reductase (GILT) in Ag and modified peptide processing by tumor cells, generation of functional epitopes for T cell recognition, and inclusion of immune checkpoint blockers in cancer immunotherapy. Taken together, this review provides a framework for the future development of novel cancer vaccines and the improvement of existing immunotherapeutics in prostate cancer.

16.
MAbs ; 5(2): 255-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412563

RESUMO

Antibodies can undergo a variety of covalent and non-covalent degradation reactions that have adverse effects on efficacy, safety, manufacture and storage. We had identified an antibody to Angiopoietin 2 (Ang2 mAb) that neutralizes Ang2 binding to its receptor in vitro and inhibits tumor growth in vivo. Despite favorable pharmacological activity, the Ang2 mAb preparations were heterogeneous, aggregated rapidly and were poorly expressed. Here, we report the engineering of the antibody variable and constant domains to generate an antibody with reduced propensity to aggregate, enhanced homogeneity, 11°C elevated T(m), 26-fold improved level of expression and retained activity. The engineered molecule, MEDI-3617, is now compatible with the large scale material supply required for clinical trials and is currently being evaluated in Phase 1 in cancer patients. This is the first report to describe the stability engineering of a therapeutic antibody addressing non canonical cysteine residues and the design strategy reported here is generally applicable to other therapeutic antibodies and proteins.


Assuntos
Anticorpos Monoclonais/genética , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Engenharia de Proteínas/métodos , Angiopoietina-2/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Cisteína/metabolismo , Temperatura Alta , Humanos , Imunoglobulina G/química , Imunoglobulina G/uso terapêutico , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA