Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2410889121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110737

RESUMO

Insects and their gut bacteria form a tight and beneficial relationship, especially in utilization of host nutrients. The red turpentine beetle (RTB), a destructive and invasive pine pest, employs mutualistic microbes to facilitate its invasion success. However, the molecular mechanism underlying the utilization of nutrients remains unknown. In this study, we found that gut bacteria are crucial for the utilization of D-glucose, a main carbon source for RTB development. Downstream assays revealed that gut bacteria-induced gut hypoxia and the secretion of riboflavin are responsible for RTB development by regulating D-glucose transport via the activation of a hypoxia-induced transcription factor 1 (Hif-1α). Further functional investigations confirmed that Hif-1α mediates glucose transport by direct upregulation of two glucose transporters (ST10 and ST27), thereby promoting RTB development. Our findings reveal how gut bacteria regulate the development of RTB, and promote our understanding of the mutualistic relationship of animals and their gut bacteria.


Assuntos
Besouros , Microbioma Gastrointestinal , Glucose , Animais , Glucose/metabolismo , Besouros/microbiologia , Besouros/metabolismo , Microbioma Gastrointestinal/fisiologia , Simbiose/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transporte Biológico , Pinus/parasitologia , Pinus/microbiologia , Pinus/metabolismo , Espécies Introduzidas , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Bactérias/metabolismo , Bactérias/genética
2.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099962

RESUMO

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glicemia/metabolismo , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Insulina/metabolismo
3.
J Biol Chem ; 299(1): 102738, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423686

RESUMO

Understanding L-fucose metabolism is important because it is used as a therapy for several congenital disorders of glycosylation. Exogenous L-fucose can be activated and incorporated directly into multiple N- and O-glycans via the fucose salvage/recycling pathway. However, unlike for other monosaccharides, no mammalian L-fucose transporter has been identified. Here, we functionally screened nearly 140 annotated transporters and identified GLUT1 (SLC2A1) as an L-fucose transporter. We confirmed this assignment using multiple approaches to alter GLUT1 function, including chemical inhibition, siRNA knockdown, and gene KO. Collectively, all methods demonstrate that GLUT1 contributes significantly to L-fucose uptake and its utilization at low micromolar levels. Surprisingly, millimolar levels of D-glucose do not compete with L-fucose uptake. We also show macropinocytosis, but not other endocytic pathways, can contribute to L-fucose uptake and utilization. In conclusion, we determined that GLUT1 functions as the previously missing transporter component in mammalian L-fucose metabolism.


Assuntos
Fucose , Transportador de Glucose Tipo 1 , Proteínas de Membrana Transportadoras , Transporte Biológico , Fucose/metabolismo , Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
4.
Mol Microbiol ; 120(2): 224-240, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37387308

RESUMO

The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.


Assuntos
Archaea , Piruvato Quinase , Archaea/metabolismo , Glicerol , Glucose/metabolismo , Frutose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 51(5): 1371-1382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38078950

RESUMO

PURPOSE: To investigate the feasibility of reducing the acquisition time for continuous dynamic positron emission tomography (PET) while retaining acceptable performance in quantifying kinetic metrics of 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) in tumors. METHODS: In total, 78 oncological patients underwent total-body dynamic PET imaging for ≥ 60 min, with 8, 20, and 50 patients receiving full activity (3.7 MBq/kg), half activity (1.85 MBq/kg), and ultra-low activity (0.37 MBq/kg) of [18F]FDG, respectively. The dynamic data were divided into 21-, 30-, 45- and ≥ 60-min groups. The kinetic analysis involved model fitting to derive constant rates (VB, K1 to k3, and Ki) for both tumors and normal tissues, using both reversible and irreversible two-tissue-compartment models. One-way ANOVA with repeated measures or the Freidman test compared the kinetic metrics among groups, while the Deming regression assessed the correlation of kinetic metrics among groups. RESULTS: All kinetic metrics in the 30-min and 45-min groups were statistically comparable to those in the ≥ 60-min group. The relative differences between the 30-min and ≥ 60-min groups ranged from 12.3% ± 15.1% for K1 to 29.8% ± 30.0% for VB, and those between the 45-min and ≥ 60-min groups ranged from 7.5% ± 8.7% for Ki to 24.0% ± 24.3% for VB. However, this comparability was not observed between the 21-min and ≥ 60-min groups. The significance trend of these comparisons remained consistent across different models (reversible or irreversible), administrated activity levels, and partial volume corrections for lesions. Significant correlations in tumor kinetic metrics were identified between the 30-/45-min and ≥ 60-min groups, with Deming regression slopes > 0.813. In addition, the comparability of kinetic metrics between the 30-min and ≥ 60-min groups were established for normal tissues. CONCLUSION: The acquisition time for dynamic PET imaging can be reduced to 30 min without compromising the ability to reveal tumor kinetic metrics of [18F]FDG, using the total-body PET/CT system.


Assuntos
Fluordesoxiglucose F18 , Neoplasias , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Cinética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-39320482

RESUMO

OBJECTIVES: To validate the feasibility of one-stop 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and [68Ga]Ga-fibroblast activation protein inhibitor-04 ([68Ga]Ga-FAPI-04) dual-low-activity-tracer positron emission tomography/computed tomography (PET/CT) at 34 min post-injection of [68Ga]Ga-FAPI-04 and explore its additional value. METHODS: Thirty pairs of patients with suspected malignancies who underwent dual-tracer imaging were enrolled in this retrospective study. The images were reconstructed at 34-39 and 50-60 min after additional injection of [68Ga]Ga-FAPI-04 (in one-stop FDG-FAPI PET/CT, named PETFDG, PETD34-39, and PETD50-60; in the 2-day protocol, named PETFDG', PETF34-39, and PETF50-60, respectively). Tumour-to-normal ratios (TNR) of lesions in PETFDG, PETD34-39, and PETD50-60 and TNR of lesions in PETF34-39 and PETF50-60 were evaluated separately. To evaluate the potential added value of one-stop FDG-FAPI PET/CT over the 2-day protocol, TNRs of PETFDG, PETD34-39, and PETD50-60 were compared with PETF34-39. The lesion detectability of the two imaging protocols was evaluated by chi-square test. RESULTS: Comparing FAPI-weighted PET (PETD34-39 and PETD50-60) and single-tracer imaging (PETFDG) in one-stop FDG-FAPI PET/CT, TNRs of FAPI-weighted PET were higher than those of PETFDG. PETD34-39 and PETD50-60 showed similar performance in lesion detectability and TNRs (all P > 0.05). In the 2-day protocol, there are no statistically significant differences in TNRs of all lesions at PETF34-39 and PETF50-60. Comparing one-stop FDG-FAPI PET/CT with the 2-day protocol, TNRs of PETF34-39 were significantly higher than those of PETFDG but lower than those of PETD34-39 and PETD50-60. Lesion detectability in the one-stop FDG-FAPI PET/CT was higher than that in the 2-day protocol. The average radiation dose in one-stop FDG-FAPI PET/CT was significantly lower than that in the 2-day protocol (P<0.001). CONCLUSION: One-stop FDG-FAPI PET/CT at 34 min could provide sufficient information to meet clinical diagnosis and showed better lesion detectability than that in the 2-day protocol.

7.
Eur J Nucl Med Mol Imaging ; 51(9): 2625-2637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676734

RESUMO

PURPOSE: Functional PET (fPET) is a novel technique for studying dynamic changes in brain metabolism and neurotransmitter signaling. Accurate quantification of fPET relies on measuring the arterial input function (AIF), traditionally achieved through invasive arterial blood sampling. While non-invasive image-derived input functions (IDIF) offer an alternative, they suffer from limited spatial resolution and field of view. To overcome these issues, we developed and validated a scan protocol for brain fPET utilizing cardiac IDIF, aiming to mitigate known IDIF limitations. METHODS: Twenty healthy individuals underwent fPET/MR scans using [18F]FDG or 6-[18F]FDOPA, utilizing bed motion shuttling to capture cardiac IDIF and brain task-induced changes. Arterial and venous blood sampling was used to validate IDIFs. Participants performed a monetary incentive delay task. IDIFs from various blood pools and composites estimated from a linear fit over all IDIF blood pools (3VOI) and further supplemented with venous blood samples (3VOIVB) were compared to the AIF. Quantitative task-specific images from both tracers were compared to assess the performance of each input function to the gold standard. RESULTS: For both radiotracer cohorts, moderate to high agreement (r: 0.60-0.89) between IDIFs and AIF for both radiotracer cohorts was observed, with further improvement (r: 0.87-0.93) for composite IDIFs (3VOI and 3VOIVB). Both methods showed equivalent quantitative values and high agreement (r: 0.975-0.998) with AIF-derived measurements. CONCLUSION: Our proposed protocol enables accurate non-invasive estimation of the input function with full quantification of task-specific changes, addressing the limitations of IDIF for brain imaging by sampling larger blood pools over the thorax. These advancements increase applicability to any PET scanner and clinical research setting by reducing experimental complexity and increasing patient comfort.


Assuntos
Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Di-Hidroxifenilalanina/análogos & derivados , Pessoa de Meia-Idade
8.
Arch Microbiol ; 206(10): 422, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352521

RESUMO

D-xylose, one of the most abundant sugars in lignocellulosic biomass, is not widely used to produce bioproducts with added value, in part due to the absence of industrial microorganisms able to metabolize it efficiently. Herbaspirillum seropedicae Z69 is a ß-proteobacterium able to accumulate poly-3-hydroxybutyrate, a biodegradable thermoplastic biopolymer, with contents higher than 50%. It metabolizes D-xylose by non-phosphorylative pathways. In the genome of Z69, we found the genes xylFGH (ABC D-xylose transporter), xylB, xylD, and xylC (superior non-phosphorylative pathway), and the transcriptional regulator xylR, forming the xyl cluster. We constructed the knock-out mutant Z69ΔxylR that has a reduced growth in D-xylose and in D-glucose, compared with Z69. In addition, we analyzed the expression of xyl genes by RT-qPCR and promoter fusion. These results suggest that XylR activates the expression of genes at the xyl cluster in the presence of D-xylose. On the other hand, XylR does not regulate the expression of xylA, mhpD (lower non-phosphorylative pathways) and araB (L-arabinose dehydrogenase) genes. The participation of D-glucose in the regulation mechanism of these genes must still be elucidated. These results contribute to the development of new strains adapted to consume lignocellulosic sugars for the production of value-added bioproducts.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Herbaspirillum , Família Multigênica , Xilose , Xilose/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Glucose/metabolismo , Regiões Promotoras Genéticas , Poli-Hidroxibutiratos
9.
Pharmacol Res ; 202: 107120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417774

RESUMO

Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.


Assuntos
Acetilglucosamina , Processamento de Proteína Pós-Traducional , Humanos , Acetilglucosamina/metabolismo , Nutrientes , Autofagia/fisiologia
10.
Epilepsy Behav ; 160: 110004, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241638

RESUMO

2-deoxy-D-glucose (2DG) has been proposed as a potential antiseizure treatment based on seizure suppressive actions in multiple acute and chronic seizure models, including models of status epilepticus (SE). Here we summarize recently completed preclinical toxicological studies of single doses of an intravenous formulation of 2DG supporting potential safety of 2DG for acute treatment of SE and acute repetitive seizures (ARS).

11.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126001

RESUMO

Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.


Assuntos
Glucose , Nanopartículas Metálicas , Prata , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Prata/química , Nanopartículas Metálicas/química , Feminino , Camundongos , Glucose/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Doxorrubicina/farmacologia , Humanos
12.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408714

RESUMO

2-deoxy-D-glucose (2DG) is a glycolysis and protein N-glycosylation inhibitor with promising anti-tumor and immunomodulatory effects. However, 2DG can also suppress T cell function, including IFN-γ secretion. Few human T cell studies have studied low-dose 2DG, which can increase IFN-γ in a Jurkat clone. We therefore investigated 2DG's effect on IFN-γ in activated human T cells from PBMCs, with 2DG treatment commenced either concurrently with activation or 48 h after activation. Concurrent 2DG treatment decreased IFN-γ secretion in a dose-dependent manner. However, 2DG treatment of pre-activated T cells had a hormetic effect on IFN-γ, with 0.15-0.6 mM 2DG (achievable in vivo) increasing and >2.4 mM 2DG reducing its secretion. In contrast, IL-2 levels declined monotonously with increasing 2DG concentration. Lower 2DG concentrations reduced PD-1 and increased CD69 expression regardless of treatment timing. The absence of increased T-bet or Eomes expression or IFNG transcription suggests another downstream mechanism. 2DG dose-dependently induced the unfolded protein response, suggesting a possible role in increased IFN-γ secretion, possibly by increasing the ER folding capacity for IFN-γ via increased chaperone expression. Overall, low-dose, short-term 2DG exposure could potentially improve the T cell anti-tumor response.


Assuntos
Desoxiglucose , Interferon gama , Ativação Linfocitária , Linfócitos T , Humanos , Interferon gama/metabolismo , Desoxiglucose/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Células Jurkat , Interleucina-2/metabolismo , Antígenos CD/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Lectinas Tipo C/metabolismo , Relação Dose-Resposta a Droga
13.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542934

RESUMO

Glucose metabolism is a crucial biological pathway maintaining the activation of extra- and intracellular signaling pathways involved in the immune response. Immune cell stimulation via various environmental factors results in their activation and metabolic reprogramming to aerobic glycolysis. Different immune cells exhibit cell-type-specific metabolic patterns when performing their biological functions. Numerous published studies have shed more light on the importance of metabolic reprogramming in the immune system. Moreover, this knowledge is crucial for revealing new ways to target inflammatory pathologic states, such as autoimmunity and hyperinflammation. Here, we discuss the role of glycolysis in immune cell activity in physiological and pathological conditions, and the potential use of inhibitors of glycolysis for disease treatment.


Assuntos
Autoimunidade , Transdução de Sinais , Humanos , Inflamação/tratamento farmacológico , Glicólise
14.
Molecules ; 29(20)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39459266

RESUMO

At present, the effects of environmental electromagnetic irradiation on the metabolism of organisms have attracted extensive attention, but the mechanism is still not clear. D-glucose plays an important role in the metabolism of organisms. In this work, the change in the optical rotation of D-glucose solution under an electrostatic field is measured experimentally, so as to explain the mechanism of the electric field-induced biological effect. The experimental results show that the electrostatic field can alter the optical rotation of D-glucose solution at different temperatures. Under the different strengths of electrostatic field, the specific rotation of D-glucose solution increases at different temperatures; the maximum increase can reach 2.07%, but the effect of temperature and electric field strength on the rotation increment is nonlinear and very complex. Further, it turns out that the proportion of α-D-glucose in solution increases by up to 3.25% under the electrostatic field, while the proportion of ß-D-glucose decreases by as much as 1.75%. The experimental study confirms that electrostatic field can change the proportion of two conformation molecules (α and ß-D-glucose) in D-glucose solution, which can provide a novel explanation for the mechanism of the electric field-induced biological effect.


Assuntos
Glucose , Eletricidade Estática , Glucose/química , Rotação Ocular , Soluções , Temperatura
15.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731624

RESUMO

Gerty T. and Carl F. Cori discovered, during research on the metabolism of sugars in organisms, the important role of the phosphate ester of a simple sugar. Glucose molecules are released from glycogen-the glucose stored in the liver-in the presence of phosphates and enter the blood as α-D-glucose-1-phosphate (Glc-1PH2). Currently, the crystal structure of three phosphates, Glc-1PNa2·3.5·H2O, Glc-1PK2·2H2O, and Glc-1PHK, is known. Research has shown that reactions of Glc-1PH2 with carbonates produce new complexes with ammonium ions [Glc-1P(NH4)2·3H2O] and mixed complexes: potassium-sodium and ammonium-sodium [Glc-1P(X)1.5Na0.5·4H2O; X = K or NH4]. The crystallization of dicationic complexes has been carried out in aqueous systems containing equimolar amounts of cations (1:1; X-Na). It was found that the first fractions of crystalline complexes always had cations in the ratio 3/2:1/2. The second batch of crystals obtained from the remaining mother liquid consisted either of the previously studied Na+, K+ or NH4+ complexes, or it was a new sodium hydrate-Glc-1PNa2·5·H2O. The isolated ammonium-potassium complex shows an isomorphic cation substitution and a completely unique composition: Glc-1PH(NH4)xK1-x (x = 0.67). The Glc-1P2- ligand has chelating fragments and/or bridging atoms, and complexes containing one type of cation show different modes of coordinating oxygen atoms with cations. However, in the case of the potassium-sodium and ammonium-sodium structures, high structural similarities are observed. The 1D and 2D NMR spectra showed that the conformation of Glc-1P2- is rigid in solution as in the solid state, where only rotations of the phosphate group around the C-O-P bonds are observed.

16.
J Neurophysiol ; 129(5): 999-1009, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017330

RESUMO

It is well established that dysfunctional glucose metabolism and in particular hypoglycemia can lead to hyperexcitability and exacerbate epileptic seizures. The precise mechanisms behind this form of hyperexcitability are still unresolved. The present study investigates to what extent oxidative stress can account for the acute proconvulsant effect of hypoglycemia. We used the glucose derivative 2-deoxy-d-glucose (2-DG) to mimic glucose deprivation in hippocampal slices during the extracellular recording of interictal-like (IED) and seizure-like (SLE) epileptic discharge in areas CA3 and CA1. After induction of IED in area CA3 by perfusion of Cs+ (3 mM), MK801 (10 µM), and bicuculline (10 µM), subsequent application of 2-DG (10 mM) resulted in the appearance of SLE in 78.3% of experiments. This effect was only observed in area CA3 and was reversibly blocked by tempol (2 mM), a scavenger of reactive oxygen species, in 60% of experiments. Preincubation with tempol reduced the incidence of 2-DG-induced SLE to 40%. Low-Mg2+-induced SLE in area CA3 and in the entorhinal cortex (EC) was also reduced by tempol. In contrast, to the above models, which depend on synaptic transmission, nonsynaptic epileptiform field bursts induced in area CA3 by a combination of Cs+ (5 mM) and Cd2+ (200 µM), or in area CA1 using the "low-Ca2+ model," was unaffected or even enhanced by tempol. These results indicate that oxidative stress significantly contributes to 2-DG-induced seizures in area CA3 and that the impact of oxidative stress differs between synaptic and nonsynaptic ictogenesis.NEW & NOTEWORTHY The main findings of the current study are that area CA3 but not area CA1 can support 2-DG-induced seizure activity, that oxidative stress significantly contributes to 2-DG-induced seizure activity in area CA3, and that the impact of oxidative stress differs between synaptic and nonsynaptic epileptiform activity. In in vitro models where ictogenesis depends on synaptic interactions, oxidative stress lowers the seizure threshold, whereas in nonsynaptic models seizure threshold is unchanged or even increased.


Assuntos
Epilepsia , Hipoglicemia , Humanos , Epilepsia/induzido quimicamente , Glucose , Hipocampo , Estresse Oxidativo , Convulsões/induzido quimicamente
17.
J Virol ; 96(14): e0068822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862706

RESUMO

Herpes simplex virus (HSV) infection of the eye can result in a blinding immunoinflammatory lesion in the cornea called herpetic stromal keratitis (HSK). This lesion is orchestrated by T cells and can be reduced in magnitude by anti-inflammatory drugs and procedures that change the balance of cellular participants in lesions. This report evaluates the effect of drugs that cause metabolic reprogramming on lesion expression using two drugs that affect glucose metabolism: 2-deoxy-d-glucose (2DG) and metformin. Both drugs could limit HSK severity, but 2DG therapy could result in herpes encephalitis if used when replicating virus was still present. The reason metformin was a safer therapy was its lack of marked inhibitory effects on inflammatory cells particularly interferon-γ (IFN-γ)-producing Th1 and CD8 T cells in the trigeminal ganglion (TG), in which HSV latency is established and sustained. Additionally, whereas 2DG in TG cultures with established latency accelerated the termination of latency, this did not occur in the presence of metformin, likely because the inflammatory cells remained functional. Our results support the value of metabolic reprogramming to control viral immunoinflammatory lesions, but the approach used should be chosen with caution. IMPORTANCE Herpes simplex virus (HSV) infection of the eye is an example where damaging lesions are in part the consequence of a host response to the infection. Moreover, it was shown that changing the representation of cellular participants in the inflammatory reaction can minimize lesion severity. This report explores the value of metabolic reprogramming using two drugs that affect glucose metabolism to achieve cellular rebalancing. It showed that two drugs, 2-deoxy-d-glucose (2DG) and metformin, effectively diminished ocular lesion expression, but only metformin avoided the complication of HSV spreading to the central nervous system (CNS) and causing herpetic encephalitis. The report provides some mechanistic explanations for the findings.


Assuntos
Desoxiglucose , Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Metformina , Animais , Córnea , Desoxiglucose/farmacologia , Glucose/metabolismo , Herpes Simples/tratamento farmacológico , Herpes Simples/imunologia , Herpesvirus Humano 1/patogenicidade , Ceratite Herpética/tratamento farmacológico , Ceratite Herpética/imunologia , Metformina/farmacologia , Camundongos , Linfócitos T/imunologia , Gânglio Trigeminal/imunologia
18.
Magn Reson Med ; 89(5): 1871-1887, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36579955

RESUMO

PURPOSE: Dynamic glucose-enhanced (DGE) MRI relates to a group of exchange-based MRI techniques where the uptake of glucose analogues is studied dynamically. However, motion artifacts can be mistaken for true DGE effects, while motion correction may alter true signal effects. The aim was to design a numerical human brain phantom to simulate a realistic DGE MRI protocol at 3T that can be used to assess the influence of head movement on the signal before and after retrospective motion correction. METHODS: MPRAGE data from a tumor patient were used to simulate dynamic Z-spectra under the influence of motion. The DGE responses for different tissue types were simulated, creating a ground truth. Rigid head movement patterns were applied as well as physiological dilatation and pulsation of the lateral ventricles and head-motion-induced B0 -changes in presence of first-order shimming. The effect of retrospective motion correction was evaluated. RESULTS: Motion artifacts similar to those previously reported for in vivo DGE data could be reproduced. Head movement of 1 mm translation and 1.5 degrees rotation led to a pseudo-DGE effect on the order of 1% signal change. B0 effects due to head motion altered DGE changes due to a shift in the water saturation spectrum. Pseudo DGE effects were partly reduced or enhanced by rigid motion correction depending on tissue location. CONCLUSION: DGE MRI studies can be corrupted by motion artifacts. Designing post-processing methods using retrospective motion correction including B0 correction will be crucial for clinical implementation. The proposed phantom should be useful for evaluation and optimization of such techniques.


Assuntos
Glucose , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Rotação , Artefatos
19.
IUBMB Life ; 75(7): 609-623, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36809563

RESUMO

Cervical cancer is one of the most common female malignant tumors, with typical cancer metabolism characteristics of increased glycolysis flux and lactate accumulation. 2-Deoxy-D-glucose (2-DG) is a glycolysis inhibitor that acts on hexokinase, the first rate-limiting enzyme in the glycolysis pathway. In this research, we demonstrated that 2-DG effectively reduced glycolysis and impaired mitochondrial function in cervical cancer cell lines HeLa and SiHa. Cell function experiments revealed that 2-DG significantly inhibited cell growth, migration, and invasion, and induced G0/G1 phase arrest at non-cytotoxic concentrations. In addition, we found that 2-DG down-regulated Wingless-type (Wnt)/ß-catenin signaling. Mechanistically, 2-DG accelerated the degradation of ß-catenin protein, which resulted in the decrease of ß-catenin expression in both nucleus and cytoplasm. The Wnt agonist lithium chloride and ß-catenin overexpression vector could partially reverse the inhibition of malignant phenotype by 2-DG. These data suggested that 2-DG exerted its anti-cancer effects on cervical cancer by co-targeting glycolysis and Wnt/ß-catenin signaling. As expected, the combination of 2-DG and Wnt inhibitor synergistically inhibited cell growth. It is noteworthy that, down-regulation of Wnt/ß-catenin signaling also inhibited glycolysis, indicating a similar positive feedback regulation between glycolysis and Wnt/ß-catenin signaling. In conclusion, we investigated the molecular mechanism by which 2-DG inhibits the progression of cervical cancer in vitro, elucidated the interregulation between glycolysis and Wnt/ß-catenin signaling, and preliminarily explored the effect of combined targeting of glycolysis and Wnt/ß-catenin signaling on cell proliferation, which provides more possibilities for the formulation of subsequent clinical treatment strategies.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Glucose/farmacologia , Via de Sinalização Wnt/genética , Glicólise , Desoxiglucose/farmacologia , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica
20.
J Med Virol ; 95(1): e28314, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380418

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi's sarcoma (KS), an HIV/AIDS-associated malignancy. Effective treatments against KS remain to be developed. The sugar analog 2-deoxy- d-glucose (2-DG) is an anticancer agent that is well-tolerated and safe in patients and was recently demonstrated to be a potent antiviral, including KSHV and severe acute respiratory syndrome coronavirus 2. Because 2-DG inhibits glycolysis and N-glycosylation, identifying its molecular targets is challenging. Here we compare the antiviral effect of 2-DG with 2-fluoro-deoxy- d-glucose, a glycolysis inhibitor, and 2-deoxy-fluoro- d-mannose (2-DFM), a specific N-glycosylation inhibitor. At doses similar to those clinically achievable with 2-DG, the three drugs impair KSHV replication and virion production in iSLK.219 cells via downregulation of viral structural glycoprotein expression (K8.1 and gB), being 2-DFM the most potent KSHV inhibitor. Consistently with the higher potency of 2-DFM, we found that d-mannose rescues KSHV glycoprotein synthesis and virus production, indicating that inhibition of N-glycosylation is the main antiviral target using d-mannose competition experiments. Suppression of N-glycosylation by the sugar drugs triggers ER stress. It activates the host unfolded protein response (UPR), counteracting KSHV-induced inhibition of the protein kinase R-like endoplasmic reticulum kinase branch, particularly activating transcription factor 4 and C/EBP homologous protein expression. Finally, we demonstrate that sugar analogs induce autophagy (a prosurvival mechanism) and, thus, inhibit viral replication playing a protective role against KSHV-induced cell death, further supporting their direct antiviral effect and potential therapeutic use. Our work identifies inhibition of N-glycosylation leading to ER stress and UPR as an antienveloped virus target and sugar analogs such as 2-DG and the newly identified 2-DFM as antiviral drugs.


Assuntos
COVID-19 , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Manose/farmacologia , Glucose , Glicosilação , Resposta a Proteínas não Dobradas , Replicação Viral , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA